

Getting Started

Add-in Express VCL Add-in Express™ 2010 for VCL

 page 2

Add-in Express™ 2010 for VCL

Revised on 26-Jul-10

Copyright © Add-in Express Ltd. All rights reserved.

Add-in Express, ADX Extensions, ADX Toolbar Controls, Afalina, AfalinaSoft and Afalina Software are trademarks or registered trademarks of Add-in

Express Ltd. in the United States and/or other countries. Microsoft, Outlook and the Office logo are trademarks or registered trademarks of Microsoft

Corporation in the United States and/or other countries. Borland and the Delphi logo are trademarks or registered trademarks of Borland Corporation in the

United States and/or other countries.

THIS SOFTWARE IS PROVIDED "AS IS" AND ADD-IN EXPRESS LTD. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.

BY WAY OF EXAMPLE, BUT NOT LIMITATION, ADD-IN EXPRESS LTD. MAKES NO REPRESENTATIONS OR WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE, DATABASE OR

DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

Getting Started

Add-in Express VCL Table of Contents

 page 3

Table of Contents

Add-in Express™ 2010 for VCL ... 2

Introduction ... 7
Why Add-in Express? ... 8

Add-in Express Products ... 8
System Requirements .. 9

Supported Delphi Versions .. 9
Host Applications .. 10

COM Add-ins .. 10
Real-Time Data Servers ... 10
Smart Tags ... 10

Technical Support .. 11
Installing and Activating .. 12

Activation Basics .. 12
Setup Package Contents .. 12
Solving Installation Problems .. 13

Getting Started .. 14
Creating Add-in Express Projects .. 15

New Items Dialog .. 15
COM Add-ins ... 16
RTD Servers ... 16
Smart Tags ... 17
Excel Automation Add-ins .. 17
Excel Workbooks .. 18
Word Documents .. 18

Add-in Express Components .. 19
How to Add an Add-in Express Component to an Add-in Express Designer .. 19
Office Ribbon Components .. 20
Task Panes .. 21

Advanced Custom Task Panes in Office 2000-2010 .. 21
Custom Task Panes in Office 2007-2010 ... 21

Command Bars: Toolbars, Menus, and Context Menus .. 21
Toolbar ... 22
Main Menu .. 22
Context Menu ... 23
Outlook Toolbars and Main Menus ... 23
Connecting to Existing Command Bars .. 24

Command Bar Controls .. 24
Command Bar Control Properties and Events .. 25
Command Bar Control Types ... 26
Using Built-in Command Bar Controls .. 26

Built-in Control Connector ... 26
Keyboard Shortcut .. 27
Outlook Bar Shortcut Manager .. 27
Outlook Property Page ... 27
Outlook Forms Manager, Excel Task Panes Manager, Word Task Panes Manager, PowerPoint Task Panes
Manager ... 28

Add-in Express VCL Table of Contents

 page 4

Smart Tag ... 28
RTD Topic .. 28
Host Application Events ... 28
MSForms Controls .. 28

Advanced Custom Task Panes ... 29
An Absolute Must-Know ... 29
Hello, World! .. 29
The Regions ... 30

Word, Excel and PowerPoint Regions .. 30
Outlook Regions ... 30

The UI Mechanics .. 35
The UI, Related Properties and Events .. 35
The Close Button and the Header .. 36
Showing/Hiding Form Instances Programmatically ... 37
Resizing the Forms ... 38
Tuning the Settings at Run-Time .. 38

Excel Task Panes .. 39
Application-specific features ... 39
Keyboard and Focus ... 39
Wait a Little and Focus Again ... 40

Advanced Outlook Regions ... 40
Context-Sensitivity of Your Outlook Form ... 41
Caching Forms ... 41
Is It Inspector or Explorer? .. 41
WebViewPane .. 42

Sample Projects .. 44
Your First Microsoft Office COM Add-in ... 44

Step #1 – Creating an Add-in Express COM Add-in Project ... 44
Step #2 – Add-in Express COM Add-in Module .. 46
Step #3 – Add-in Express COM Add-in Designer ... 47
Step #4 – Adding a New Command Bar ... 47
Step #5 – Adding a New Command Bar Button .. 48
Step #6 – Accessing Host Application Objects ... 49
Step #7 - Customizing Main Menus .. 50
Step #8 – Customizing Context Menus ... 51
Step #9 – Handling Host Application Events .. 52
Step #10 – Customizing the Office 2007-2010 Ribbon User Interface .. 53
Step #11 – Adding Custom Task Panes in Excel 2000-2010 ... 53
Step #12 – Adding Custom Task Panes for PowerPoint 2000-2010... 54
Step #13 – Adding Custom Task Panes for Word 2000-2010 .. 55
Step #14 – Running the COM Add-in ... 55
Step #15 – Debugging the COM Add-in ... 57
Step #16 – Deploying the COM Add-in ... 58

Your First Microsoft Outlook COM Add-in .. 59
Step #1 – Creating an Outlook COM Add-in Project ... 59
Step #2 – Add-in Express COM Add-in Module .. 61
Step #3 – Add-in Express COM Add-in Designer ... 63
Step #4 – Adding a New Explorer Command Bar ... 63
Step #5 – Adding a New Command Bar Button .. 65
Step #6 – Accessing Outlook Objects ... 65

Add-in Express VCL Table of Contents

 page 5

Step #7 – Handling Outlook Events .. 66
Step #8 – Adding a New Inspector Command Bar ... 67
Step #9 – Customizing Main Menus in Outlook .. 68
Step #10 – Customizing Context Menus in Outlook .. 69
Step #11 – Handling Events of Outlook Items Object ... 70
Step #12 – Adding Property Pages to the Folder Properties Dialogs ... 72
Step #13 – Intercepting Keyboard Shortcuts .. 72
Step #14 – Customizing the Outlook 2007-2010 Ribbon User Interface ... 73
Step #15 – Adding Custom Task Panes in Outlook 2000-2010 .. 74
Step #16 – Running the COM Add-in ... 76
Step #17 – Debugging the COM Add-in ... 77
Step #18 – Deploying the COM Add-in ... 77

Your First Excel RTD Server .. 78
Step #1 – Creating a New Add-in Express RTD Server Project ... 78
Step #2 – Add-in Express RTD Server Module .. 80
Step #3 – Add-in Express RTD Server Designer .. 81
Step #4 – Adding and Handling a New Topic ... 81
Step #5 – Running the RTD Server .. 82
Step #6 – Debugging the RTD Server .. 82
Step #7 – Deploying the RTD Server .. 83

Your First Smart Tag ... 84
Step #1 – Creating a New Smart Tag Library Project ... 84
Step #2 – Add-in Express Smart Tag Module ... 85
Step #3 – Add-in Express Smart Tag Designer .. 87
Step #4 – Adding a New Smart Tag ... 87
Step #5 – Adding and Handling Smart Tag Actions .. 88
Step #6 - Running Your Smart Tag ... 88
Step #7 – Debugging the Smart Tag .. 90
Step #8 – Deploying the Smart Tag .. 90

Your First Excel Automation Add-in .. 91
Step #1 – Creating a New COM Add-in Project .. 91
Step #2 – Involving Excel Automation Add-in Functionality .. 93
Step #3– Creating User-Defined Functions .. 93
Step #4 – Running the Excel Automation Add-in .. 94
Step #5 – Debugging the Excel Automation Add-in .. 95
Step #6 – Deploying the Excel Automation Add-in ... 96

Add-in Express Tips and Notes... 97
Terminology .. 97
Getting Help on COM Objects, Properties and Methods .. 97
COM Add-ins Dialog ... 97
How to Get Access to the Add-in Host Applications ... 98
Registry Entries .. 98
ControlTag vs. Tag Property ... 98
Pop-ups .. 98
Edits and Combo Boxes and the Change Event ... 98
Built-in Controls and Command Bars .. 98
CommandBar.SupportedApps .. 99
Outlook Command Bar Visibility Rules ... 99
Removing Custom Command Bars and Controls ... 99
My Add-in Is Always Disconnected ... 99

Add-in Express VCL Table of Contents

 page 6

Update Speed for an RTD Server ... 99
Sequence of Events When an Office 2007 Task Pane Shows up .. 99
Adding an Office 2007 Task Pane to an Existing Add-in Express Project .. 100
Temporary or Not? .. 101
Registering with User Privileges ... 102
GDIPLUS.DLL .. 104
Sharing Ribbon Controls Across Multiple Add-ins .. 104
Final Note ... 105

Add-in Express VCL Introduction

 page 7

Introduction

Add-in Express VCL is a development tool designed to simplify and speed up the

development of Office COM Add-ins, Run-Time Data servers (RTD servers), Smart

Tags, and Excel Automation Add-ins in Delphi 5, 6, 7, 2005, 2006, 2007, 2009 and

2010 through the consistent use of the RAD paradigm. It provides a number of

specialized components that allow the developer to walk through the interface-

programming phase to the functional programming phase with a minimal loss of

time.

.

Add-in Express VCL Why Add-in Express?

 page 8

Why Add-in Express?

Microsoft supplied us with another term – Office Extensions. This term covers all the customization
technologies provided for Office applications. The technologies are:

• COM Add-ins

• Smart Tags

• Excel RTD Servers

• Excel Automation Add-ins

Add-in Express allows you to overcome the basic problem when customizing Office applications – building
your solutions into the Office application. Based on the True RAD paradigm, Add-in Express saves the time
that you would have to spend on research, prototyping, and debugging numerous issues of any of the
above-mentioned technologies in all versions and updates of all Office applications. The issues include safe
loading / unloading, host application startup / shutdown, as well as user-interaction-related and deployment-
related issues.

Add-in Express Products

Add-in Express offers a number of products for developers on its web site.

• Add-in Express 2010 for Microsoft Office and .NET

It allows creating version-neutral native-code COM add-ins, smart tags, Excel Automation add-ins, XLL add-
ins and RTD servers in Visual Studio 2005, 2008 and 2010 without VSTO. See http://www.add-in-
express.com/add-in-net/.

• Add-in Express 2010 for Internet Explorer and .NET

It allows developing add-ons for IE 6, 7 and 8 in .NET. Custom toolbars, sidebars and BHOs are already on
board. See http://www.add-in-express.com/programming-internet-explorer/.

• Security Manager 2010 for Microsoft Outlook

This is a product designed for Outlook solution developers. It allows controlling the Outlook e-mail security
guard by turning it off and on in order to suppress unwanted Outlook security warnings. See http://www.add-
in-express.com/outlook-security/

http://www.add-in-express.com/add-in-net/�
http://www.add-in-express.com/add-in-net/�
http://www.add-in-express.com/programming-internet-explorer/�
http://www.add-in-express.com/outlook-security/�
http://www.add-in-express.com/outlook-security/�

Add-in Express VCL System Requirements

 page 9

System Requirements

Supported Delphi Versions

• Delphi 5 Architect with Update Pack 1

• Delphi 5 Enterprise with Update Pack 1

• Delphi 5 Professional with Update Pack 1

• Delphi 6 Architect with Update Pack 2

• Delphi 6 Enterprise with Update Pack 2

• Delphi 6 Professional with Update Pack 2

• Delphi 7 Architect with Update Pack 1

• Delphi 7 Enterprise with Update Pack 1

• Delphi 7 Professional with Update Pack 1

• Delphi 2005 for VCL Architect with Update Pack 3

• Delphi 2005 for VCL Enterprise with Update Pack 3

• Delphi 2005 for VCL Professional with Update Pack 3

• Delphi 2006 for VCL Architect with Update Pack 2

• Delphi 2006 for VCL Enterprise with Update Pack 2

• Delphi 2006 for VCL Professional with Update Pack 2

• Delphi 2007 for Win32 Enterprise with Update Pack 3

• Delphi 2007 for Win32 Professional with Update Pack 3

• Delphi 2009 for Win32 Architect with Update Pack 4

• Delphi 2009 for Win32 Enterprise with Update Pack 4

• Delphi 2009 for Win32 Professional with Update Pack 4

• Delphi 2010 for Win32 Architect with Update Pack 1

• Delphi 2010 for Win32 Enterprise with Update Pack 1

• Delphi 2010 for Win32 Professional with Update Pack 1

• Turbo Delphi Professional

You must have Microsoft Office 2000 Sample Automation Server Wrapper Components installed

for Add-in Express to work.

Add-in Express VCL System Requirements

 page 10

Host Applications

COM Add-ins

• Microsoft Excel 2000 and higher

• Microsoft Outlook 2000 and higher

• Microsoft Word 2000 and higher

• Microsoft FrontPage 2000 and higher

• Microsoft PowerPoint 2000 and higher

• Microsoft Access 2000 and higher

• Microsoft Project 2000 and higher

• Microsoft MapPoint 2002 and higher

• Microsoft Visio 2002 and higher

• Microsoft Publisher 2003 and higher

• Microsoft InfoPath 2007 and higher

Real-Time Data Servers

• Microsoft Excel 2002 and higher

Smart Tags

• Microsoft Excel 2002 and higher

• Microsoft Word 2002 and higher

• Microsoft PowerPoint 2003 and higher

Smart tags are deprecated in Excel 2010 and Word 2010. Though, you can still use the related

APIs in projects for Excel 2010 and Word 2010, see Changes in Word 2010 and Changes in Excel

2010.

Excel Automation Add-ins

• Microsoft Excel 2002 and higher

http://technet.microsoft.com/en-ca/library/cc179199.aspx�
http://technet.microsoft.com/en-ca/library/cc179167.aspx�
http://technet.microsoft.com/en-ca/library/cc179167.aspx�

Add-in Express VCL Technical Support

 page 11

Technical Support

Add-in Express is developed and supported by the Add-in Express Team, a branch of Add-in Express Ltd.
You can get technical support using any of the following methods.

The Add-in Express web site at www.add-in-express.com provides a mine of information and software
downloads for Add-in Express developers, including:

• The HOWTOs section that contains sample projects answering most common "how to" questions.

• Add-in Express technical blog contains most recent information as well as Video HOWTOs.

• Add-in Express Toys contains "open sourced" add-ins for popular Office applications.

• Built-in Controls Scanner utility, which is free.

For technical support through the Internet, e-mail us at support@add-in-express.com or use our forums. We
are actively participating in these forums. Really.

If you are a subscriber of our Premium Support Service and need help immediately, you can request
technical support via an instant messenger, e.g. Windows/MSN Messenger or Skype.

http://www.add-in-express.com/�
http://www.add-in-express.com/support/add-in-express-howto.php�
http://www.add-in-express.com/creating-addins-blog/�
http://www.add-in-express.com/free-addins/�
http://www.add-in-express.com/downloads/controls-scanner.php�
mailto:support@add-in-express.com�
http://www.add-in-express.com/forum/�

Add-in Express VCL Installing and Activating

 page 12

Installing and Activating

What follows below is a brief guide on installing and activating your copy of Add-in Express.

Activation Basics

During the registration process, the registration wizard prompts you to enter your license key. The key is a
30 character alphanumeric code shown in six groups of five characters each (for example, AXN4M-GBFTK-
3UN78-MKF8G-T8GTY-NQS8R). Keep the license key in a safe location and do not share it with others.
This product key forms the basis for your ability to use the software.

For the purposes of product activation only, a non-unique hardware identifier is created from general
information that is included in the system components. Product activation is anonymous. At no time, files on
the hard drive are scanned, or any personally identifiable information is used to create the hardware
identifier. To ensure your privacy, the hardware identifier is created by what is known as a "one-way hash".
To produce a one-way hash, information is processed through an algorithm to create a new alphanumeric
string. It is impossible to get the original information from the resulting string.

Your product key and a hardware identifier are the only pieces of information required to activate the
product. No other information is collected from your PC or sent to the activation server.

If you choose the Automatic Activation Process option of the activation wizard, the wizard attempts to
establish an online connection to the activation server, www.activatenow.com. If the connection is
established, the wizard sends both the license key and the hardware identifier over the Internet. The
activation service generates an activation key using this information and sends it back to the activation
wizard. The wizard saves the activation key to the registry.

If an online connection cannot be established (or you choose the Manual Activation Process option), you
can activate the software using your web-browser. In this case, you will be prompted to enter the product
key and a hardware identifier on a web page, and will get an activation key in return. This process ends with
saving the activation key to the registry.

Activation is completely anonymous; no personally identifiable information is required. The activation key
can be used to activate the product on the same computer an unlimited number of times. However, if you
need to install the product on several computers, you will need to perform the activation process again on
every PC. Please refer to your end-user license agreement for information about the number of computers
you can install the software on.

Setup Package Contents

The Add-in Express setup program installs the following folders on your PC:

• Packages – Add-in Express design-time packages for Delphi 5, 6, 7, 2005, 2006, 2007, 2009, 2010

http://www.activatenow.com/�

Add-in Express VCL Installing and Activating

 page 13

• Docs – Add-in Express documentation

• Redistributables – Add-in Express redistributable files

• Sources – Add-in Express source code

• Sources \ DesignTime – design-time source code.

Where is the Add-in Express source code?

Please note that the source code of Add-in Express is delivered or not depending on the product

package you purchased. See the Feature Matrix & Pricing page for details.

Add-in Express setup program installs the following text files on your PC:

• licence.txt – the EULA

• readme.txt – short description of the product, support addresses and such

• whatsnew.txt – this file describes the latest information on the product features added and bugs fixed.

Solving Installation Problems

Make sure you are an administrator on the PC. On Vista, Windows 7 and Windows 2008 Server, set UAC to
its default level. In Control Panel | System | Advanced | Performance | Settings | Data Execution Prevention,
set the "... for essential Windows programs and services only" flag. Remove the following registry key, if it
exists:

HKEY_CURRENT_USER\Software\Add-in Express\{product identifier} {version}
{package}

Finally, use the Automatic activation option in the installer windows.

http://www.add-in-express.com/add-in-delphi/featurematrix.php�

Add-in Express VCL Getting Started

 page 14

Getting Started

In this chapter, we guide you through the following steps of developing Add-in Express projects:

• Create an Add-in Express project

• Add Add-in Express components to the Add-in Express module

• Add some business logics

• Build, register, and debug the Add-in Express project

• Deploy your project to a target PC

Add-in Express VCL New Items Dialog

 page 15

Creating Add-in Express Projects

New Items Dialog

Add-in Express for Office and VCL adds several project templates to the Add-in Express VCL tab of the New
Items dialog. To see the dialog, choose “File | New | Other…” in the menu.

Whichever Add-in Express project template you choose, it starts the project wizard that allows specifying
parameters of your project. The project wizard creates a new project and opens it in the Delphi IDE. The
project contains an appropriate module. There are several designer types responsible for common tasks in
customizing Office. Project-specific modules are the core components of Add-in Express. You can add any
components onto the modules.

Below we list the Office automation tasks and Add-in Express module types available for the task:

• COM Add-ins - TadxCOMAddinModule

• RTD Servers – TadxXLRTDServerModule

• Smart Tags - TadxSmartTagModule

• Excel Automation Add-ins - TadxCOMAddinModule

• Excel Workbooks - TadxExcelSheetModule

• Word Documents – TadxWordDocumentModule

Add-in Express VCL COM Add-ins

 page 16

Also, Add-in Express provides a number of components that simplify and speed up the development of
Office extensions (see Add-in Express Components).

COM Add-ins

COM Add-ins have been around since Office 2000 when Microsoft allowed Office applications to extend
their features with COM DLLs supporting the IDTExtensibility2 interface (it is a COM interface, of course).
Since then thousands of developers have racked their brains over this interface and the Office Object Model
that provides COM objects representing command bars, command bar controls, etc. These were the
sources of Add-in Express.

TadxCOMAddinModule represents a COM Add-in in any Office application. You specify the name, host
application(s) and load behavior for the add-in. The typical value for the LoadBehavior property is 3
(Connected & LoadAtStartup). For Outlook add-ins, you specify the Options page and Folder Property page
(see Outlook Property Page). Look at the following chapters for the Add-in Express components you add
onto the TadxCOMAddinModule: Office Ribbon Components, Command Bars: Toolbars, Menus, and
Context Menus, Command Bar Controls, Built-in Control Connector, Keyboard Shortcut, Outlook Bar
Shortcut Manager, Advanced Custom Task Panes, and Host Application Events.

Use the AddinStartupComplete and AddinBeginShutdown events to handle add-in startup and shutdown.

This guide describes two sample add-in projects: see Your First Microsoft Office COM Add-in and Your First
Microsoft Outlook COM Add-in.

RTD Servers

RTD Server is a technology introduced in Excel XP. It is a great way to display constantly changing data
such as stock quotes, currency exchange rates, inventory levels, price quotes, weather information, sports
scores, and so on.

A short terminology list follows below:

• An RTD server is a Component Object Model (COM) Automation server that implements the IRtdServer
interface. Excel uses the RTD server to communicate with a real-time data source on one or more
topics.

• A real-time data source is any source of data that you can access programmatically.

• A topic is a string (or a set of strings) that uniquely identifies a piece of data that resides in a real-time
data source. The RTD server passes the topic to the real-time data source and receives the value of the
topic from the real-time data source; the RTD server then passes the value of the topic to Excel for
display. For example, the RTD server passes the topic "New Topic" to the real-time data source, and the
RTD server receives the topic value of "72.12" from the real-time data source. The RTD server then
passes the topic value to Excel for display.

Add-in Express VCL Smart Tags

 page 17

TadxXLRTDServerModule represents an RTD server. The only Add-in Express component allowed for this
designer is the RTD Topic. The module provides the Interval property that indicates the time interval
between updates (in milliseconds).

You refer to an existing RTD server using the RTD worksheet function in Excel:

=RTD(ProgID, Server, String1, String2, ... String28)

The ProgID parameter is a required string value representing the programmatic ID (ProgID) of the RTD
server. The current version of Add-in Express requires the Server parameter to be an empty string. Use two
quotation marks (''). The String1 through String28 parameters represent the topics of the RTD server.
Only the String1 parameter is required; the String2 through String28 parameters are optional. The actual
values for the String1 through String28 parameters depend on the requirements of the real-time data server.

Smart Tags

Office XP bestowed Smart Tags upon us in Word and Excel. Office 2003 added PowerPoint to the list of
smart tag host applications. This technology provides Office users with more interactivity for the contents of
their Office documents. A smart tag is an element of text in an Office document having custom actions
associated with it. Smart tags allow recognizing such text using either a dictionary-based or a custom-
processing approach. An example of such text might be an e-mail address you type into a Word document
or an Excel workbook. When smart tag recognizes the e-mail address, it allows the user to choose one of
the actions associated with the text. For e-mail addresses, possible actions are to look up additional contact
information or send a new e-mail message to that contact.

TadxSmartTagModule lies at the base of the Add-in Express Smart Tags. It represents a set or a library of
smart tag recognizers in Excel, Word, and PowerPoint. The only Add-in Express component you add to the
designer is Smart Tag.

Smart tags are deprecated in Excel 2010 and Word 2010. Although you can still use the related

APIs in projects for Excel 2010 and Word 2010, these applications do not automatically recognize

terms, and recognized terms are no longer underlined. Users must trigger recognition and view

custom actions associated with text by right-clicking the text and clicking the Additional Actions

on the context menu. Please see Changes in Word 2010 and Changes in Excel 2010.

Excel Automation Add-ins

Excel 2002 brought in Automation Add-ins – a technology that allows writing user-defined functions for use
in Excel formulas. Add-in Express provides you with a specialized module, COM Excel Add-in Module, that
cuts down this task to just writing one or more user-defined functions. A typical function accepts one or more

http://technet.microsoft.com/en-ca/library/cc179199.aspx�
http://technet.microsoft.com/en-ca/library/cc179167.aspx�

Add-in Express VCL Excel Workbooks

 page 18

Excel ranges and/or other parameters. Excel shows the resulting value of the function in the cell where the
user calls it.

Add-in Express allows developing Excel Automation add-ins using the add-in module that has the
XLAutomationAddin Boolean property. Set the property to true, add a method to the add-in module's type
library, and write the method’s code.

Excel Workbooks

Sometimes you need to automate a given Excel workbook (template). You can do it with
TadxExcelSheetModule that represents one worksheet of the workbook. For the module to recognize the
workbook, you need to fill the following properties: Document, Worksheet, PropertyID, and PropertyValue.
When you fill the PropertyID and PropertyValue properties, the design-time code of the module creates the
property in the workbook and specifies its value.

A typical scenario of the module usage includes creating the workbook and designing it with MS Forms
controls. Accordingly, in the IDE, you set up the PropertyID and PropertyValue properties, add Add-in
Express MSForms control components to the module and bind them to the MS Forms controls on the
worksheet. The module provides a full set of events available for the Excel Workbook class.

For the Add-in Express components available for the module see the following chapters: Command Bars:
Toolbars, Menus, and Context Menus, Command Bar Controls, Built-in Control Connector, MSForms
Controls, and Host Application Events.

Word Documents

To automate a given Word document, you use the TadxWordDocumentModule. For the module to
recognize the document, you need to fill the following properties: Document, PropertyID, and
PropertyValue. When you fill the PropertyID and PropertyValue properties, the design-time code of the
module creates the property in the document and specifies its value.

A typical scenario of the module usage includes creating a document and designing it with MS Forms
controls. Accordingly, in the IDE, you set up PropertyID and PropertyValue properties, add Add-in Express
MSForms control components to the module and bind them to the MS Forms controls on the document. The
module provides a full set of events available for the Word Document class.

For the Add-in Express components available for the module see the following chapters: Command Bars:
Toolbars, Menus, and Context Menus, Command Bar Controls, Built-in Control Connector, MSForms
Controls, and Host Application Events. The module provides a full set of events available for a Word
document.

Add-in Express VCL How to Add an Add-in Express Component to an Add-in Express Designer

 page 19

Add-in Express Components

How to Add an Add-in Express Component to an Add-in Express Designer

You can find all the Add-in Express components below in the Add-in Express category on the Tool Palette:

• TadxCommandBar – a command bar (see Command Bars: Toolbars, Menus, and Context Menus)

• TadxOlExplorerCommandBar – an Outlook Explorer command bar (see Command Bars: Toolbars,
Menus, and Context Menus)

• TadxOlInspectorCommandBar – an Outlook Inspector command bar (see Command Bars: Toolbars,
Menus, and Context Menus)

• TadxMainMenu – a main menu in any Office application (see Command Bars: Toolbars, Menus, and
Context Menus)

• TadxOlExplorerMainMenu – a main menu in Outlook Explorer (see Command Bars: Toolbars, Menus,
and Context Menus)

• TadxOlInspectorMainMenu – a main menu in Outlook Inspector (see Command Bars: Toolbars, Menus,
and Context Menus)

• TadxContextMenu – a context menu in any Office application (see Command Bars: Toolbars, Menus,
and Context Menus)

• TadxBuiltInControl – allows intercepting the action of a built-in control of the host application(s) (see
Built-in Control Connector)

• TadxOlBarShortcutManager – allows adding Outlook Bar shortcuts and shortcut groups (see Outlook
Bar Shortcut Manager)

• TadxKeyboardShortcut – allows intercepting application-level keyboard shortcuts (see Keyboard
Shortcut)

• TadxRTDTopic – represents a topic supported by your RTD server (see RTD Topic)

• TadxSmartTag – represents a Smart Tag

• Tadx<application name>AppEvents – allows connecting to application-level events in the corresponding
Office applications (see Host Application Events)

• TadxRibbonTab – a Ribbon tab (see Office Ribbon Components)

• TadxRibbonQAT – the Ribbon Quick Access Toolbar (see Office Ribbon Components)

• TadxRibbonOfficeMenu – the Ribbon Office Menu (see Office Ribbon Components)

• TadxRibbonCommand – allows intercepting built-in Ribbon commands (see Office Ribbon Components)

• TadxOLSolutionModule – allows adding a solution module to the Outlook 2010 UI (see Programming
the Outlook 2010 Solutions Module)

http://msdn.microsoft.com/en-us/library/ee692173.aspx�
http://msdn.microsoft.com/en-us/library/ee692173.aspx�

Add-in Express VCL Office Ribbon Components

 page 20

• TadxRibbonContextMenu – allows customizing context menus available in the Office 2010 Ribbon UI
(see Context Menu)

• TadxBackstageView – allows customizing the File Tab in the Office 2010 Ribbon UI.

• TadxOlFormsManager – allows embedding custom VCL forms into Outlook windows (see Advanced
Custom Task Panes)

• TadxExcelTaskPanesManager – allows embedding custom VCL forms into the main Excel window (see
Advanced Custom Task Panes)

• TadxWordTaskPanesManager – allows embedding custom VCL forms into the Word windows (see
Advanced Custom Task Panes)

• TadxPowerPointTaskPanesManager – allows embedding custom VCL forms into the main PowerPoint
window (see Advanced Custom Task Panes)

Office Ribbon Components

Office 2007 presented a new Ribbon user interface. Microsoft states that the interface makes it easier and
quicker for users to achieve the desired results. The developers extend this interface by using the XML
markup that the COM add-in should return to the host through the appropriate interface.

Add-in Express provides some 50 Ribbon-related components to give you the full power of the Ribbon UI
customization features. You start with TadxRibbonTab, TadxBackstageView in Office 2010 or
TadxRibbonOfficeMenu in Office 2007 and TadxRibbonQAT (Quick Access Toolbar) that undertake the
task of creating the markup. You add controls to a tab or menu using a convenient tree-view-like editor that
allows you to see all the items of a tab or menu at a glance. To access the controls in your code you use the
FindRibbonControl function of the add-in module. Please note, Microsoft requires developers to use the
StartFromScratch parameter (see the StartFromScratch property of the add-in module) when customizing
the Quick Access Toolbar.

In Office 2010, Microsoft abandoned the Office Button (introduced in Office 2007) in favor of the File Tab
(Backstage View). To provide some sort of compatibility for you, TadxRibbonOfficeMenu will map your
controls to the File tab unless you use TadxBackStageView components in your project; otherwise all the
controls you add to TadxRibbonOfficeMenu are ignored when Office 2010 loads your add-in.

To use pre-Office2007 command bars in the Office 2007-2010 add-ins, you must explicitly set the
UseForRibbon property of the appropriate command bar components to True. In this case, your toolbars are
added to the built-in ribbon tab called Add-ins.

You use the Ribbon Command (TadxRibbonCommand) component to override the default action of a built-
in Ribbon control. Note that Microsoft allows intercepting only buttons, toggle buttons and check boxes; see
the ActionTarget property of the component. You specify the built-in Ribbon control to be intercepted in the
IdMso property of the component. In fact, you are expected to specify the ID of the control to be intercepted.
All such IDs are available for download at the Microsoft web site, for Office 2007, see here; for Office 2010,

http://www.microsoft.com/downloads/details.aspx?FamilyID=4329d9e9-4d11-46a5-898d-23e4f331e9ae&DisplayLang=en�

Add-in Express VCL Task Panes

 page 21

see this page. The download installs Excel files; the Control Name column of each contains the IDs of
almost all built-in Ribbon controls for the corresponding Ribbon.

New features of the Ribbon UI in Office 2010 are covered by the TadxBackStageView and
TadxRibbonContextMenu components discussed in Main Menu and Context Menu.

Task Panes

Advanced Custom Task Panes in Office 2000-2010

Add-in Express provides a technology to show custom task panes in Outlook, Excel, Word and PowerPoint,
versions 2000-2010. See Advanced Custom Task Panes for details.

Custom Task Panes in Office 2007-2010

To allow further customization of its applications, Office 2007 provides custom task panes. Add-in Express
supports Office 2007 custom task panes by providing the appropriate window in the project wizard and
equipping the add-in module with the TaskPanes property. Use the Add-in Express COM Add-in project
wizard to add a task pane(s) to your project. Add your reaction to the OnTaskPaneXXX event series of the
add-in module and the OnDockPositionStateChange and OnVisibleStateChange events of the task pane.

Command Bars: Toolbars, Menus, and Context Menus

Microsoft Office 2000-2003 supplied us with a common term for Office toolbars, menus, and context menus.
This term is "command bar". Add-in Express provides toolbar, menu, and context menu components that
allow tuning up targeted command bars at design-time. Every such component provides a visual designer
available in the Controls property of the component.

For instance, the screenshot above shows a visual designer for the toolbar component that creates a
custom toolbar with a button. Note that this screenshot was taken when creating a sample project described
in Your First Microsoft Office COM Add-in.

http://www.microsoft.com/downloads/details.aspx?FamilyID=3f2fe784-610e-4bf1-8143-41e481993ac6&displaylang=en�

Add-in Express VCL Command Bars: Toolbars, Menus, and Context Menus

 page 22

To create toolbars, menus, and context menus in

Outlook, you need to use Outlook-specific versions of

command bar components.

Toolbar

To add a toolbar to your add-in, find TadxCommandBar
(TadxOlExplorerCommandBar,
TadxOlInspectorCommandBar) in the Tool Palette and
drop it onto the add-in module. Its most important property is CommandBarName. If its value is not equal to
the name of any built-in command bar of the host application, then you are creating a new command bar. If
its value is equal to any built-in command bar of the host application, then you are connecting to a built-in
command bar. To find out the built-in command bar names, use our free Built-in Controls Scanner utility.

To position your toolbar, use the Position property that allows docking your toolbar to the top, right, bottom,
or left edges of the host application window. You can also leave your toolbar floating. For a fine positioning
you can use the CommandBarLeft, CommandBarTop, and RowIndex properties. To show a pre-2007
toolbar in the Add-ins tab in Office 2007, set the UseForRibbon property of the corresponding command bar
component to true.

To speed up add-in loading when connecting to an existing command bar, set the Temporary property to
False. To make the host application remove the command bar when the host application quits, set the
Temporary property to true. See also Temporary or Not?

Main Menu

By using the Add Main Menu command of the add-in module, you add a TadxMainMenu, which is intended
for customizing main menu in an Office application that you specify in the SupportedApp property.

Like the toolbar component, it provides a visual designer for the Controls property. To add a custom top-
level menu item, just add a popup control to the command bar. Then you can populate it with other controls.
Note, however, that for all menu components, the controls can be buttons and pop-ups only. To add a
custom button to a built-in top-level menu item, you specify the ID of the top-level menu item in the OfficeId
property of the button control. For instance, the ID of the File menu item in all Office applications is 30002.
See more details about IDs of command bar controls in Using Built-in Command Bar Controls and Step #7 -
Customizing Main Menus in Your First Microsoft Office COM Add-in. See also Command Bar Controls, Built-
in Control Connector.

In main applications of Office 2007, they replaced the command system with the Ribbon UI. So, instead of
adding custom items to the main menu, you need to add them to a custom or built-in Ribbon tab. Also, you

http://www.add-in-express.com/downloads/controls-scanner.php�

Add-in Express VCL Command Bars: Toolbars, Menus, and Context Menus

 page 23

can add custom items to the menu of the Office Button. In Office 2010, they added the Ribbon UI to all
Office applications and abandoned the Office button in favor of the File Tab, also known as Backstage View.
Add-in Express provides components allowing customizing both the File Tab and the Ribbon Office menu,
see Step #7 - Customizing Main Menus in Your First Microsoft Office COM Add-in. Note, if you customize
the Office Button menu only, Add-in Express maps your controls to the Backstage View. If, however, both
Office Button menu and File tab are customized at the same time, Add-in Express ignores custom controls
you add to the Office Button menu.

Context Menu

The TadxContextMenu component allows you to add a custom command bar control to any context menu
available in all Office applications except for Outlook 2000. The component allows connecting to a single
context menu of a single host application. Like for the Main Menu component, you must specify the
SupportedApp property. To specify the context menu you want to connect to, just choose the name of the
context menu in the CommandBarName combo.

Note that context menu names for this combo were taken from Office 2007, the last Office version that
introduced new commandbar-based context menus. Therefore, it is possible that the targeted context menu
is not available in a pre-2007 Office version.

In Office 2010 and higher, you can customize both
commandbar-based and Ribbon-based context menus. See
Step #8 – Customizing Context Menus in Your First Microsoft
Office COM Add-in and Step #10 – Customizing Context
Menus in Outlook in Your First Microsoft Outlook COM Add-
in.

Outlook Toolbars and Main Menus

While the look-and-feel of all Office toolbars is the same, Outlook toolbars differ from toolbars of other Office
applications because Outlook has toolbars in Outlook Explorer and Outlook Inspector windows that work in
quite different ways. Accordingly, Add-in Express includes Outlook-specific command bar components that
work correctly in multiple Explorer and Inspector windows scenarios: TadxOlExplorerCommandBar and
TadxOlInspectorCommandBar. In the same way, Add-in Express provides Outlook-specific versions of the
Main Menu component: TadxOlExplorerMainMenu and TadxOlInspectorMainMenu.

Add-in Express VCL Command Bar Controls

 page 24

All of the components above provide the FolderName, FolderNames, and ItemTypes properties that add
context-sensitive features to the command bar. For instance, you can choose your toolbar to show up for e-
mails only. To achieve this just specify a correct value in the ItemTypes property editor.

Connecting to Existing Command Bars

In Office, all command bars are identified by their names. Keeping it in mind, you can add a custom or built-
in control to any existing command bar. The only thing you need to know is the command bar name. Use
our free Built-in Controls Scanner to get the names of all command bars and controls existing in any Office
application. Then you can specify any of the command bar names in the CommandBarName property of the
appropriate command bar component.

Command Bar Controls

The Office Object Model (OOM) includes the following command bar controls: CommandBarButton,
CommandBarComboBox, and CommandBarPopup. Using the correct property settings of the
CommandBarComboBox component, you can extend the list with edits and dropdowns.

What follows below is a list of controls available for Add-in Express command bars:

• TadxCommandBarButton

• TadxCommandBarComboBox

• TadxCommandBarEdit

• TadxCommandBarPopup

• TadxCommandBarDropDownList

• TadxCommandBarControl (you use this item to add built-in controls to your command bars)

• TadxCommandBarAdvancedControl (reserved for future use).

 Please note that due to the nature of command bars (remember, a 'command bar' stands for toolbar, menu,
and context menu), [context] menu items can be buttons, combo boxes, and pop-ups only.

Command bar components provide the Controls property. Clicking it in the Object Inspector window in
Delphi invokes the appropriate visual designer. On the picture below, you can see the visual designer to
populate a toolbar with custom controls.

http://www.add-in-express.com/downloads/controls-scanner.php�

Add-in Express VCL Command Bar Controls

 page 25

Using the designer, you can populate your command bars with controls and set up their properties at
design-time. At run-time, you use the Controls collection of your command bar. Every control (built-in and
custom) added to this collection will be added to the corresponding toolbar at your add-in startup.

Command Bar Control Properties and Events

The main property of any command bar control (they descend from TadxCommandBarControl) is the
OfficeId property. To add a built-in control to your toolbar, specify its ID in the OfficeId property of a
corresponding command bar control component. To find out the ID of every built-in control in any Office
application, use our free Built-in Controls Scanner utility. To add a custom control onto the toolbar, leave
OfficeId unchanged.

To add a separator before any given control, set its BeginGroup property to true.

Set up the control's appearance using a large number of its properties, such as Enabled and Visible, Style
and State, Caption and ToolTipText, DropDownLines and DropDownWidth, etc. You also control the size
(Height, Width) and location (Before, AfterId, and BeforeId) properties. To provide your command bar
buttons with a default list of icons, drop an ImageList component onto the add-in module and specify the
ImageList in the Images property of the module. Do not forget to set the button's Style property to either
adxMsoButtonIconAndCaption or adxMsoButtonIcon.

Use the OlExplorerItemTypes, OlInspectorItemTypes, and OlItemTypesAction properties to add context-
sensitivity to controls on Outlook-specific command bars. The OlItemTypesAction property defines an
action that Add-in Express will perform with the control when the current item's type coincides with that
specified by you.

To handle user actions, use the Click event for buttons and the Change event for edit, combo box, and drop
down list controls. Also use the DisableStandardAction property available for built-in buttons added to your
command bar. To intercept events of any built-in control, see Built-in Control Connector.

http://www.add-in-express.com/downloads/controls-scanner.php�

Add-in Express VCL Built-in Control Connector

 page 26

Command Bar Control Types

The Office Object Model contains the following control types available for toolbars: button, combo box, and
pop-up. Using the correct property settings of the combo box component, you can extend the list with edits
and dropdowns.

Please note that due to the nature of command bars, menu and context menu items can only be buttons
and pop-ups (item File in any main menu is a sample of a popup).

Using Built-in Command Bar Controls

Add-in Express connects to a built-in control using the ID that you supply in the OfficeID property. That is, if
you specify the ID of a control not equal to 1, Add-in Express adds it to your toolbar. Using this approach,
you can override the standard behavior of a built-in button on a given toolbar:

• Add a new toolbar component to the module

• Specify the toolbar name in the CommandBarName property

• Add a TadxCommandBarButton to the command bar

• Specify the ID of the built-in button in the TadxCommandBarButton.OfficeId property

• Set DisableStandardAction to true

• Now you can handle the Click event of the button

You can find the IDs using the free Built-in Controls Scanner utility. Download it at http://www.add-in-
express.com/downloads/controls-scanner.php.

Built-in Control Connector

Built-in controls of an Office application have predefined IDs. You can find the IDs using the free Built-in
Controls Scanner utility.

The Built-in Control Connector component allows overriding the standard action of any built-in control
without adding it onto any command bar.

Add TadxBuiltInControl onto TadxCOMAddinModule. Set its Id property to the command bar control ID.
To connect the component to the command bar control, leave its CommandBar property empty. To connect
the component to the control on a given toolbar, specify the toolbar in the CommandBar property. To
override the default action of the control, use the Action event. The component traces the context and when
any change happens, it reconnects to the currently active instance of the command bar control with the
given Id, taking this task away from you.

Connecting to built-in Ribbon controls is described in Office Ribbon Components

http://www.add-in-express.com/downloads/controls-scanner.php�
http://www.add-in-express.com/downloads/controls-scanner.php�
http://www.add-in-express.com/downloads/controls-scanner.php�
http://www.add-in-express.com/downloads/controls-scanner.php�

Add-in Express VCL Keyboard Shortcut

 page 27

Keyboard Shortcut

Every Office application provides built-in keyboard combinations that allow shortening the access path for
commands, features, and options of the application. Add-in Express allows adding custom keyboard
combinations and processing both custom and built-in ones.

Add the component onto TadxCOMAddinModule, choose the keyboard shortcut you need in the
ShortcutText property, set the HandleShortCuts property of the Add-in Express module to true and process
the Action event of the KeyboardShortcut component.

Outlook Bar Shortcut Manager

Outlook provides us with the Outlook Bar (Navigation Pane in Outlook 2003). The Outlook Bar displays
Shortcut groups consisting of Shortcuts that you can target at a Microsoft Outlook folder, a file-system
folder, or a file-system path or URL. You use the Outlook Bar Shortcut Manager to customize the Outlook
Bar with your shortcuts and groups.

This component is available for TadxCOMAddinModule. Use the Groups collection of the component to
create a new shortcut group. Use the Shortcuts collection of a short group to create a new shortcut. To
connect to an existing shortcut or shortcut group, set the Caption properties of the corresponding
TadxOlBarShortcut and/or TadxOlBarGroup components equal to the caption of the existing shortcut or
shortcut group. Please note that there is no other way to identify the group or shortcut.

That is why your shortcuts and shortcut groups must be named uniquely for Add-in Express to remove only
the specified ones (and not those having the same names) when the add-in is uninstalled. That is why you
have to do this yourself. Depending on the type of its value, the Target property of the TadxOlBarShortcut
component allows you to specify different shortcut types. If the type is MAPIFolder, the shortcut represents
a Microsoft Outlook folder. If the type is a String, the shortcut represents a file-system path or a URL.

Outlook Property Page

Outlook allows extending its Options dialog with custom pages. You see this dialog when you choose Tools
| Options menu. In addition, Outlook allows adding such page to the Folder Properties dialog. You see this
dialog when you choose the Properties item in the folder context menu. You can create such pages in the
Add-in Express Outlook Add-in project wizard.

The FolderName, FolderNames, and ItemTypes properties of the Add-in Express Outlook folder pages work
in the same way as those of Outlook-specific command bars.

Specify reactions required by your business logics in the Apply event handler. In the page controls' event
handlers, use the UpdatePropertyPageSite method to mark the page as Dirty.

Add-in Express VCL Outlook Forms Manager, Excel Task Panes Manager, Word Task Panes Manager, PowerPoint
Task Panes Manager

 page 28

Outlook Forms Manager, Excel Task Panes Manager, Word Task Panes
Manager, PowerPoint Task Panes Manager

See Advanced Custom Task Panes.

Smart Tag

The Kind property of the TadxSmartTag component allows you to choose from two text recognition
strategies: using a list of words in the RecognizedWords string collection, or implementing a custom
recognition process based on the Recognize event of the component. Use the ActionNeeded event to
change the Actions collection according to the current context. The component raises the PropertyPage
event when the user clicks the Property button in the Smart Tags tab (Tools | AutoCorrect Options menu) for
your smart tag.

RTD Topic

Use the String## properties to identify the topic of your RTD server. To handle RTD server startup situations
nicely, specify the default value for the topic and using the UseStoredValue property, specify if the RTD
function in Excel returns the default value (UseStoredValue := false) or doesn't change the displayed value
(UseStoredValue := true). The RTD Topic component provides you with the Connect, Disconnect, and
RefreshData events. The last one occurs (for enabled topics only) whenever Excel calls the RTD function.

Host Application Events

Add-in Express provides event components for all Office applications on the Tool Palette: Just add
appropriate Add-in Express event components to the module, and use their event handlers to respond to the
host application events. However, we recommend you to make use of the events provided by the add-in
module before you start using event components.

MSForms Controls

Add-in Express provides MS Forms control components on the Tool Palette. These components are to be
used on the TadxExcelSheetModule and TadxWordDocumentModule. Add an the appropriate MS Forms
Control Connector to the module. Use the ControlName property of the connector to specify the underlying
control on the Excel worksheet or Word document. Respond to the events provided by the control
connector.

Add-in Express VCL An Absolute Must-Know

 page 29

Advanced Custom Task Panes

Add-in Express allows COM add-ins to show custom panes in Outlook, Excel, Word, and PowerPoint,
versions 2000-2007.

An Absolute Must-Know

Here are the three main points you should know:

• there are application-specific <Manager> components; every <Manager> component provides a
collection; each <Item> from the collection binds a <Form> (an application-specific descendant of
TForm) to the visualization and context (Outlook-only) settings;

• you never create an instance of a <Form> in the way you create an instance of TForm; instead, the
<Manager> creates instances of the <Form> for you either automatically or at your request;

• the Visible property of a <Form> instance is true when the instance is embedded into a window region
(as specified by the visualization settings) regardless of the actual visibility of the instance; the Active
property of the <Form> instance is true when the instance is shown on top of all other instances in the
same region.

A necessary comment

Anywhere in this section, a term in angle brackets, such as <Manager> or <Form> above, specifies

a component, class, or class member, the actual name of which is application-dependent. Every

such term is covered in the corresponding chapter of this manual.

Hello, World!

The process of adding custom panes to a particular application is described in the respective parts of the
following samples:

• Outlook – in Your First Microsoft Outlook COM Add-in see Step #15 – Adding Custom Task Panes in
Outlook 2000-

• Excel – in Your First Microsoft Office COM Add-in, see Step #11 – Adding Custom Task Panes in Excel
2000-

• PowerPoint – in Your First Microsoft Office COM Add-in, see Step #12 – Adding Custom Task Panes for
PowerPoint 2000-

• Word – in Your First Microsoft Office COM Add-in, see Step #13 – Adding Custom Task Panes for Word
2000-

Add-in Express VCL The Regions

 page 30

The Regions

Obviously, all Office applications have different window structures. Therefore, Add-in Express provides a
number of application-specific options for embedding your forms.

Word, Excel and PowerPoint Regions

These Office applications allow showing your forms in four regions; the regions are docked to the four edges
of the application’s main window. The names of the regions are Left, Top, Right, and Bottom (see the
Position property of the <Item>).

Outlook Regions

Outlook regions are specified in the ExplorerLayout and InspectorLayout properties of the item (=
TadxOlFormsCollectionItem). Note that you must also specify the item's ExplorerItemTypes and/or
InspectorItemTypes properties; otherwise, the form (an instance of ADXOlForm) will never be shown. Here
is the list of Outlook regions:

• Four regions around the list of mails, tasks, contacts etc. The region names are LeftSubpane,
TopSubpane, RightSubpane, BottomSubpane (see the screenshot below)

• One region below the Navigation Pane – BottomNavigationPane (see the screenshot below)

• One region below the To-Do Bar – BottomTodoBar (see the screenshot below)

Add-in Express VCL The Regions

 page 31

• One region below the Outlook Bar (Outlook 2000 and 2002) – BottomOutlookBar

• The WebViewPane region (see the screenshot below). Note that it uses Outlook properties in order to
replace the items grid with your form (see also WebViewPane).

Add-in Express VCL The Regions

 page 32

• The FolderView region. Unlike WebViewPane, it allows the user to switch between the original Outlook
view and your form.

Add-in Express VCL The Regions

 page 33

• Four regions around the Reading Pane – LeftReadingPane, TopReadingPane, RightReadingPane,
BottomReadingPane (see the screenshot below)

• Four regions around the body of an e-mail, task, contact, etc. The region names are LeftSubpane,
TopSubpane, RightSubpane, BottomSubpane (see the screenshot below)

Add-in Express VCL The Regions

 page 34

• The InspectorRegion region (see the screenshot below)

Add-in Express VCL The UI Mechanics

 page 35

The UI Mechanics

The UI, Related Properties and Events

As mentioned in An Absolute Must-Know, the <Manager> creates instances of the <Form>. An instance of
the <Form> (further on it is referenced as form) is considered visible if it is embedded into a region. The
form may be actually invisible either due to the region state (see below) or because other forms in the same
region hide it. Anyway, in this case <Form>.Visible returns true. To prevent embedding the form into a
region, you can set <Form>.Visible to false in the event named OnADXBeforeFormShow in Outlook,
OnADXBeforeTaskPaneShow in Excel, Word, and PowerPoint. When the form is shown in a region, the
OnActivate event occurs and <Form>.Active becomes true. When the user moves the focus onto the form,
the <Form> generates the OnADXEnter event. When the form loses focus, the OnADXLeave event
occurs. When the form becomes actually invisible, it generates the OnDeactivate event. When the
corresponding <Manager> removes the form from its region, <Form>.Visible becomes false and the form
generates the OnADXAfterFormHide event in Outlook, OnADXAfterTaskPaneHide event in Excel, Word,
and PowerPoint.

The form may be initially shown in any of the following region states: normal, hidden (collapsed to a 5px
wide strip), minimized (reduced to the size of the form caption).

You can change the state of your form at run-time using the <Form>.RegionState property. When showing
your Outlook form in some layouts, you need to show the standard form that your form overlays; use the
TadxOlForm.ActivateStandardPane() method. Also, you can use the DefaultRegionState property of the
<Item>. Note that this property will work for you when you show the form in that region for the very first time
and no other forms have been shown in that region before.

When the region is in the hidden state, the user can click on the splitter and the region will get back to the
normal state.

When the region is in the normal state, the user can choose any of the options below:

• change the region size by moving the splitter; this raises size-related events of the form

Add-in Express VCL The UI Mechanics

 page 36

• hide the form by clicking on the "dotted" mini-button or by double-clicking anywhere on the splitter; this
fires the OnDeactivate event of the <Form>

• close the form by clicking on the Close button in the form header; this fires the
OnADXCloseButtonClick event of the <Form>. The event can be cancelled; if it isn't cancelled, the
OnDeactivate event occurs, then the pane is being deleted from the region (<Form>.Visible = false)
and finally the <OnADXAfterFormHide> event of the <Form> occurs

• show another form by clicking the header and choosing an appropriate item in the popup menu; this
fires the OnDeactivate event on the first form and the OnActivate event on the second form

• transfer the region to the minimized state by clicking the arrow in the right corner of the form header; this
fires the OnDeactivate event of the form.

When the region is in the minimized state, the user can choose either of the two options below:

• return the region to the normal state by clicking the arrow at the top of the slim profile of the form region;
this raises the OnActivate event of the form and changes the Active
property of the form to true

• expand the form itself by clicking on the form's button; this opens the
form so that it overlaps a part of the Outlook window near the form
region; this also raises the OnActivate event of the form and sets the
Active property of the form to true.

• drag an Outlook item, Excel chart, file, selected text, etc onto the form
button; this fires the OnADXDragOverMinimized event of the form;
the event allows you to check the object being dragged and to decide
if the form should be restored.

The Close Button and the Header

The Close button is shown if the CloseButton property of the <Item> is true. The header is always displayed
when there are two or more forms in the same region. When there is just one form in a region, the header is
shown only if the AlwaysShowHeader property of the <Item> is true.

Clicking on the Close button in the form header fires the OnADXCloseButtonClick event of the <Form>, the
event is cancellable:

procedure TadxOlForm1.adxOlFormADXCloseButtonClick(Sender: TObject;
 Args: TadxOlCloseButtonClickEventArgs);
begin
 //Args.CloseForm := false;
end;

Add-in Express VCL The UI Mechanics

 page 37

You can create a Ribbon or command bar button that allows the user to show the form that was previously
hidden.

Showing/Hiding Form Instances Programmatically

In Excel and PowerPoint, a single instance of the <Form> is always created for a given <Item> because
these applications show documents in a single main window. On the contrary, Word is an application that
normally shows multiple windows, and in this situation, the Word Task Panes Manager creates one
instance of the pane for every document opened in Word.

Outlook is a specific host application. It shows several instances of two window types simultaneously. In
addition, the user can navigate through the folder tree and select, create and read several Outlook item
types. Accordingly, a TadxOlFormsCollectionItem can generate and show several instances of
TadxOlForm at the same time. Find more details on managing custom panes in Outlook in Advanced
Outlook Regions

To access the form, which is currently active in Excel or PowerPoint, you use the TaskPaneInstance property
of the <Item>. In Word, the property name is CurrentTaskPaneInstance; in Outlook, it is the GetCurrentForm
method. To access all instances of the <Form> in Word, you use the TaskPaneInstances property of
TadxWordTaskPanesCollectionItem; in Outlook, you use the FormInstances method of
TadxOlFormsCollectionItem.

By setting the Enabled property of an <Item> to false, you delete all form instances created for that <Item>.
To hide any given form (i.e. to remove it from the region), call its Hide method.

You can check that a form is not available in the UI (say, you cancelled the <OnBeforInstanceCreate> or
<OnBeforeFormShow> events or the user closed it) by checking the Visible property of the form:

function TAddInModule.DoesPaneExistInTheUI(): Boolean;
var
 Pane: TadxWordTaskPane1;
begin
 Pane :=
 adxWordTaskPanesManager1.Items[0].CurrentTaskPaneInstance
 as TadxWordTaskPane1;
 if Pane <> nil then
 Result := Pane.Visible
 else
 Result := false;
end;

If the form is not available in the UI, you can show such a form in one step:

Add-in Express VCL The UI Mechanics

 page 38

• for Outlook, you call the ApplyTo method of the <Item>; the method accepts the parameter, which is
either Outlook2000._Explorer or Outlook2000._Inspector;

• for Excel, Word, and PowerPoint, you call the ShowTaskPane method of the <Item>

The methods above also transfer the region showing the form to the normal state.

If the Active property of your form is false, that is if your form is hidden by other forms in the region, then
you can call the Activate method of the <Form> to show the form on top of all other forms in that region.
Note that if the region is in either minimized or hidden state, calling Activate will also transfer it to the normal
state.

Note that your form does not restore its Active state in subsequent sessions of the host application in
regions showing several forms. In other words, if several add-ins show several forms in the same region and
the current session ends with a given form on top of all other forms in that region, the subsequent start of
the host application may show some other form as active. This is because events are given to add-ins in an
unpredictable order. When dealing with several forms of a given add-in, they are created in the order
determined by their locations in the <Items> collection of the <Manager>.

In Outlook, due to context-sensitivity features provided by the <Item>, an instance of your form will be
created whenever the current context matches that specified by the corresponding <Item>.

Resizing the Forms

There are two values of the Splitter property of the <Item>. The default one is sbStandard. This value shows
the splitter allowing the user to change the form size as required. The form size is stored in the registry so
that the size is restored whenever the user starts the host application.

You can only resize your form programmatically, if you set the Splitter property to sbNone. Of course, no
splitter will be shown in this case. Changing the Splitter property programmatically does not affect a form
currently loaded into its region (that is, having Visible = true). Instead, it will be applied to any newly shown
form.

If the form is shown in a given region for the first time and no forms were ever shown in this region, the form
will be shown using the appropriate dimensions that you set at design-time. On subsequent host application
sessions, the form will be shown using the dimensions set by the user.

Tuning the Settings at Run-Time

To add/remove an <Item> to/from the collection and to customize the properties of an <Item> at add-in
start-up, you use the <Initialize> event of the <Manager>; the event's name is OnInitialize for Outlook and
OnADXInitalize for Excel, Word and PowerPoint.

Add-in Express VCL Excel Task Panes

 page 39

Changing the Enable, Cached (Outlook only), <FormClassName> properties at run-time deletes all form
instances created by the <Item>.

Changing the InspectorItemTypes, ExplorerItemTypes, ExplorerMessageClasses, ExplorerMessageClass,
InspectorMessageClasses, InspectorMessageClass, FolderNames, FolderName properties of the
ADXOlFormsCollectionItem deletes all non-visible form instances.

Changing the <Position> property of the <Item> changes the position for all visible form instances.

Changing the Splitter and Tag properties of the <Item> does not do anything for the currently visible form
instances. You will see the change of the splitter when the <Manager> shows a new instance of the
<Form>.

Excel Task Panes

Please see The UI Mechanics above for the detailed description of how Add-in Express panes work. Below
you see the list containing some generic terms mentioned in An Absolute Must-Know and their Excel-
specific equivalents:

• <Manager> - TadxExcelTaskPanesManager, the Excel Task Panes Manager

• <Item> - TadxExcelTaskPanesCollectionItem

• <Form> - TadxExcelTaskPane

Application-specific features

TadxExcelTaskPane provides useful events that are unavailable in the Excel object model:
OnADXBeforeCellEdit and OnADXAfterCellEdit.

Keyboard and Focus

TadxExcelTaskPane provides the OnADXKeyFilter event. It deals with the feature of Excel that captures
the focus if a key combination handled by Excel is pressed. By default, Add-in Express panes do not pass
key combinations to Excel. Thus, you can be sure that the focus will not leave the pane unexpectedly.

Just to understand this Excel feature, imagine that you need to let the user press Ctrl+S and get the
workbook saved while your pane is focused. In such a scenario, you have two ways out:

• You process the key combination in the code of the pane and use the Excel object model to save the
workbook.

• Or you send this key combination to Excel using the OnADXKeyFilter event.

Add-in Express VCL Advanced Outlook Regions

 page 40

Besides the obvious difference between the two ways above, the former leaves the focus on your pane
while the latter effectively moves it to Excel because of the focus-capturing feature just mentioned.

The algorithm of key processing is as follows. Whenever a single key is pressed, it is sent to the pane.
When a key combination is pressed, TadxExcelTaskPane determines if the combination is a shortcut to the
pane. If it is, the keystroke is sent to the pane. If it is not, OnADXKeyFilter is fired and the key combination
is passed to the event handler. Then the event handler specifies whether to send the key press to Excel or
to the pane. The latter is the default behavior. Note that sending the key combination to Excel will result in
moving the focus off the pane. The above implies that the OnADXKeyFilter event never fires for shortcuts
on the pane's controls.

In addition, OnADXKeyFilter is never fired for hot keys (Alt + an alphanumeric symbol). If
TadxExcelTaskPane determines that the pane cannot process the hot key, it sends the hot key to Excel,
which activates its main menu. After the user has navigated through the menu by pressing arrow buttons,
Esc, and other hot keys, opened and closed Excel dialogs, TadxExcelTaskPane will get focus again.

Wait a Little and Focus Again

The pane provides a simple infrastructure that allows implementing the Wait a Little schema - see the
ADXPostMessage method and the OnADXPostMessageReceived event.

Currently we know at least one situation when this trick is required. Imagine that you show a pane and you
need to set the focus on a control on the pane. It is not a problem to do this in, say the OnActivate event.
Nevertheless, it is useless because Excel, continuing its initialization, moves the focus off the pane. With the
above-mentioned method and event you can make your pane look like it never loses focus: in the
OnActivate event handler, you call the ADXPostMessage method specifying a unique message ID and, in
the OnADXPostMessageReceived event, you filter incoming messages. When you get the appropriate
message, you set the focus on the control. Beware of a huge lot of inappropriate messages.

Advanced Outlook Regions

Please see The UI Mechanics above for the detailed description of how Add-in Express panes work. Below
you can see the list containing some generic terms mentioned in An Absolute Must-Know and their Excel-
specific equivalents:

• <Manager> - TadxOlFormsManager, the Outlook Forms Manager

• <Item> - TadxOlFormsCollectionItem

• <Form> - TadxOlForm

Add-in Express VCL Advanced Outlook Regions

 page 41

Context-Sensitivity of Your Outlook Form

Whenever the Outlook Forms Manager detects a context change in Outlook, it searches the
TadxOlFormsCollection collection for enabled items that match the current context and if any match is
found, it shows or creates the corresponding instances.

TadxOlFormsCollectionItem provides a number of properties that allow specifying the context settings for
your form. Say, you can specify item types for which your form will be shown. Note that in case of explorer,
the item types that you specify are compared with the default item type of the current folder. In addition, you
can specify the names of the folders for which your form will be shown in the FolderName and
FolderNames properties. These properties also work for Inspector windows – in this case, the parent folder
of the Outlook item is checked. A special value in FolderName is an empty string (''), which means "all
folders". You can also specify message class (es) for which your form will be shown. Note that all context-
sensitivity properties of TadxOlFormsCollectionItem are processed using the OR Boolean operation.

In advanced scenarios, you can also use the OnADXBeforeFormInstanceCreate event of
TadxOlFormsCollectionItem and the ADXBeforeFormShow event of TadxOlForm in order to prevent your
form from being shown (see also Showing/Hiding Form Instances Programmatically). In addition, you can
use events provided by TadxOlForm in order to check the current context. Say, you can use the
OnADXBeforeFolderSwitch or OnADXSelectionChange events of TadxOlForm.

Caching Forms

By default, whenever Add-in Express needs to show a form, it creates a new instance of that form. You can
change this behavior by choosing an appropriate value of the TadxOlFormsCollectionItem.Cached property.
The values of this property are:

• csNewInstanceForEachFolder – it shows the same form instance whenever the user navigates to the
same Outlook folder.

• csOneInstanceForAllFolders – it shows the same form instance for all Outlook folders.

• csNone – no form caching is used.

Caching works within the same Explorer window: when the user opens another Explorer window, Add-in
Express creates another set of cached forms. Forms shown in Inspector windows cannot be cached.

Is It Inspector or Explorer?

Check the InspectorObj and ExplorerObj properties of TadxOlForm. These properties return COM objects
that will be released when your form is removed from its region. This may occur several times in the lifetime
of a given form instance because Add-in Express may remove your form from a given region and then
embed the form to the same region in order to comply with Outlook windowing.

Add-in Express VCL Advanced Outlook Regions

 page 42

WebViewPane

When this value (see Outlook Regions) is chosen in the ExplorerLayout property of
TadxOlFormsCollectionItem, Add-in Express uses the WebViewUrl and WebViewOn properties of
Outlook.MAPIFolder (also Outlook.Folder in Outlook 2007) in order to show your form as a home page for
a given folder(s).

Unfortunately, due to a bug in Outlook 2002, Add-in Express has to scan all folders in Outlook in order to set
and restore the WebViewUrl and WebViewOn properties. The first consequence is a delay at startup if the
current profile contains thousands of folders. A simple way to prevent the delay is to disable the
corresponding item(s) of the Items collection of the Forms Manager at design-time and enable it in the
AddinStartupComplete event of the add-in module. Because PublicFolders usually contains many folders,
Add-in Express does not allow using WebViewPane for PublicFolders and all folders below it. Outbox and
Sync Issues and all folders below them are not supported as well when using WebViewPane.

Because of the need to scan Outlook folders, WebViewPane produces another delay when the user works
in the Cached Exchange Mode (see the properties of the Exchange account in Outlook) and the Internet
connection is slow or broken. To bypass this problem, Add-in Express allows reading EntryIDs of those
folders from the registry. Naturally, you are supposed to write appropriate values to the registry at add-in
start-up. Here is the code:

procedure TAddInModule.SaveDefaultFoldersEntryIDToRegistry(
 PublicFoldersEntryID, PublicFoldersAllPublicFoldersEntryID,
 FolderSyncIssuesEntryID: string);
var
 Reg: TRegistry;
begin
 Reg := TRegistry.Create;
 try
 if Reg.OpenKey(self.RegistryKey
 + '\' + ADXXOL + '\'
 + 'FoldersForExcludingFromUseWebViewPaneLayout', true) then begin
 if (PublicFoldersEntryID <> EmptyStr) then begin
 Reg.WriteString('PublicFolders', PublicFoldersEntryID);
 end;
 if (PublicFoldersAllPublicFoldersEntryID <> EmptyStr) then begin
 Reg.WriteString('PublicFoldersAllPublicFolders',
 PublicFoldersAllPublicFoldersEntryID);
 end;
 if (FolderSyncIssuesEntryID <> EmptyStr) then begin
 Reg.WriteString('FolderSyncIssues', FolderSyncIssuesEntryID);
 end;
 end;
 finally
 Reg.CloseKey;
 Reg.Free;

http://support.microsoft.com/kb/305093�

Add-in Express VCL Advanced Outlook Regions

 page 43

 end;
end;

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 44

Sample Projects

Your First Microsoft Office COM Add-in

This chapter highlights almost every aspect of creating COM Add-ins for Microsoft Office applications. You
download the sample described below at http://www.add-in-express.com/support/addin-delphi.php#office-
addin. This sample shows an Add-in Express COM Add-in project that implements a COM add-in for Excel,
Word and PowerPoint.

Outlook and Add-in Express

Please note, Add-in Express provides additional components for COM Add-ins in Outlook. See Your

First Microsoft Outlook COM Add-in.

Step #1 – Creating an Add-in Express COM Add-in Project

Add-in Express adds the Add-in Express COM Add-in project template to the New Items Dialog.

When you select the template and click OK, the MS Office COM Add-in Wizard starts. In the wizard
windows, you choose the project options.

http://www.add-in-express.com/support/addin-delphi.php#office-addin�
http://www.add-in-express.com/support/addin-delphi.php#office-addin�

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 45

The project wizard creates and opens the COM Add-in project in the IDE.

The add-in project includes the following items:

• The project source files (ProjectName.*);

• The type library file (ProjectName_TLB.pas);

• The add-in module (ProjectName_IMPL.pas and ProjectName_IMPL.dfm) discussed in the following
step.

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 46

Step #2 – Add-in Express COM Add-in Module

The add-in module (MyAddin1_IMPL.pas and MyAddin1_IMPL.dfm) is the core component of the COM add-in
project (see COM Add-ins). It is the container of the Add-in Express components, which allow you to
concentrate on the functionality of your add-in. You specify the add-in properties in the module's properties,
add the Add-in Express components to the module's designer, and write the functional code of your add-in
in this module.

The code for MyAddin1_IMPL.pas is as follows:

unit MyAddin1_IMPL;

interface

uses
 SysUtils, ComObj, ComServ, ActiveX, Variants, Office2000, adxAddIn,
 MyAddin1_TLB;

type
 TcoMyAddin1 = class(TadxAddin, IcoMyAddin1)
 end;

 TAddInModule = class(TadxCOMAddInModule)
 procedure adxCOMAddInModuleAddInInitialize(Sender: TObject);
 procedure adxCOMAddInModuleAddInFinalize(Sender: TObject);
 private
 protected
 public
 end;
var
 adxcoMyAddin1: TAddInModule;

implementation

{$R *.dfm}

procedure TAddInModule.adxCOMAddInModuleAddInInitialize(Sender: TObject);
begin
 adxcoMyAddin1 := Self;
end;

procedure TAddInModule.adxCOMAddInModuleAddInFinalize(Sender: TObject);
begin
 adxcoMyAddin1 := nil;
end;

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 47

initialization
 TadxFactory.Create(ComServer, TcoMyAddin1, CLASS_coMyAddin1,
 TAddInModule);

end.

The add-in module contains two classes: the “interfaced” class (TcoMyAddin1 in this case) and the add-in
module class (TAddInModule). The “interfaced” class is a descendant of the TadxAddIn class that
implements the IDTExtensibility2 interface required by the COM Add-in architecture. Usually you do not
need to change anything in the TadxAddIn class.

The add-in module class implements the add-in functionality. It is an analogue of the Data Module, but
unlike the Data Module, the add-in module allows you to set all properties of your add-in, handle its events,
and create toolbars and controls.

Step #3 – Add-in Express COM Add-in Designer

The designer of the add-in module allows
setting add-in properties and adding
components to the module.

In the Object Inspector for the module, choose
the SupportedApps property and select Excel,
Word, and PowerPoint.

To add an Add-in Express component to the
add-in module designer, you select it in the
Tool Palette and drag-n-drop onto the designer.

See also How to Add an Add-in Express
Component to an Add-in Express Designer

Step #4 – Adding a New Command Bar

To add a command bar to your add-in, find the TadxCommandBar component in the Tool Palette and drag-
n-drop it onto the TadxCOMAddinModule designer (see also Command Bars: Toolbars, Menus, and
Context Menus).

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 48

Select the command bar component, and, in the Object Inspector window, specify the command bar name
using the CommandBarName property. In addition, you select its position in the Position property.

To display a command bar in Office 2007-2010 you must explicitly set the UseForRibbon property

of the command bar component to True. The controls added to such a command bar will be shown

on the built-in Ribbon tab called Add-ins

Step #5 – Adding a New Command Bar Button

To add a new button to the command bar, in the Object Inspector window you run the property editor of the
Controls property for the appropriate command bar component. The property editor is a simple and easy
designer of command bars and their controls.

Specify the button's Caption property and set the Style property to adxMsoButtonIconAndCaption (default
value = adxMsoButtonAutomatic). In the Object Inspector window, you switch to the Events tab to add the
OnClick event handler for the command bar button component.

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 49

Step #6 – Accessing Host Application Objects

The add-in module provides the HostApplication property that returns the Application object (of the
OleVariant type) of the host application in which the add-in is running now. For your convenience Add-in
Express provides the <HostName>App properties, say ExcelApp of the TExcelApplication type and
WordApp of the TWordApplication type. Together with the HostType property, it allows writing the
following code to the OnClick event of the newly added button.

procedure TAddInModule.DefaultAction(Sender: TObject);
begin
 ShowMessage(GetInfoString());
end;

function TAddInModule.GetInfoString(): string;
var
 er: ExcelRange;
 IWindow: IDispatch;
begin
 Result := 'No document window found!';
 try
 // Word raises an exception if there's no document open
 IWindow := HostApp.ActiveWindow;
 except
 end;
 try
 if IWindow <> nil then
 case HostType of
 ohaExcel:
 try
 er := (IWindow as Excel2000.Window).ActiveCell;
 //relative address
 Result := 'The current cell is: '
 + er.AddressLocal[False, False, xlA1, EmptyParam, EmptyParam];
 finally
 er := nil;
 end;
 ohaWord:
 Result := 'The current selection contains '
 + IntToStr(
 (IWindow as Word2000.Window).Selection.Range.Words.Count)
 + ' words';
 ohaPowerPoint:
 Result := 'The current selection contains '
 + IntToStr(
 (IWindow as MSPpt2000.DocumentWindow).Selection.SlideRange.Count)
 + ' slides';

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 50

 else
 Result := 'The ' + AddinName
 + ' COM Add-in doesn''t support the current host application!' ;
 end;
 except
 end;
 IWindow := nil;
end;

Step #7 - Customizing Main Menus

Add-in Express provides a component to customize main menus in Office applications (but see Your First
Microsoft Outlook COM Add-in for customizing Outlook main menus). Some applications from Office 2000-
2003 have several main menus. Say, in these Excel versions, you find Worksheet Menu Bar and Chart
Menu Bar. Naturally, in Excel 2007 and 2010 these menus are replaced with the Ribbon UI. Nevertheless,
they are still accessible programmatically and you may want to use this fact in your code.

In this sample, we are going to customize the File menu in
Excel and Word version 2000-2003. You start with adding two
main menu components (TadxMainMenu) and specifying
correct host applications in their SupportedApp properties.
Then, in the CommandBarName property, you specify the
main menu.

The screenshot on the right shows how you set up the main
menu component in order to customize the Worksheet Menu
Bar main menu in Excel 2000-2003.

The TadxMainMenu.Controls property provides a
designer that allows adding custom controls to a set of
predefined popup controls that corresponds to built-in
main menu items such as File, Edit, etc. Those popups
demonstrate the main principle of referencing built-in
command bar controls: if the OfficeID property of a
commandbar control component is other than 1, you are
referencing the corresponding built-in control. You can
find the IDs of built-in command bar controls using the
free Built-in Controls Scanner utility. Download it at
http://www.add-in-express.com/downloads/controls-
scanner.php.

In the source code of the sample add-in described here, you can find how you can customize the Office
Button menu in Office 2007 (see the component named adxRibbonOfficeMenu1). As to the Backstage View,
also known as a File tab in Office 2010, the sample projects provide the adxBackstageView1 component

http://www.add-in-express.com/downloads/controls-scanner.php�
http://www.add-in-express.com/downloads/controls-scanner.php�

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 51

that implements the customization shown in Figure 3 at Introduction to the Office 2010 Backstage View for
Developers. Note, if you customize the Office Button menu only, Add-in Express maps your controls to the
Backstage View. If, however, both Office Button menu and File tab are customized at the same time, Add-in
Express ignores custom controls you add to the Office Button menu.

Step #8 – Customizing Context Menus

Add-in Express allows customizing commandbar-based
context menus in Office 2000-2010 with the
TadxContextMenu component. Its use is similar to that of the
TadxMainMenu component. See how to set up such a
component to add a custom button to the Cell context menu
in Excel:

• Add a context menu component to the add-in module

• Specify the host application, the context menu of which

you need to customize

• Specify the context menu to be customized

• Use the editor of the Controls collection to populate the context menu with custom controls

You may want to use the OnBeforeAddControls event provided by the component to modify the context
menu depending on the current context. Say, custom controls in the context menu may reflect the content of
an Excel cell, the current chapter of the Word document, etc.

There are several issues related to using command bar based context menus:

• Excel contains two different context menus named Cell. This fact breaks down the command bar

development model because the only way to recognize two command bars is to compare their names.

This isn't the only exception: see the Built-in Control Scanner to find a number of examples. In this

case, the context menu component cannot distinguish context menus. Accordingly, it connects to the

first context menu with the specified name.

• Command bar based context menu items cannot be positioned in the Ribbon-based context menus: a

custom context menu item created with the ADXContextMenu component will always be shown below

the built-in and custom context menu items in a Ribbon-based context menu of Office 2010.

To add a custom item to a context menu in Office 2010, you use the TadxRibbonContextMenu component.
Unlike its commandbar-based counterpart (TadxContextMenu), this component allows adding the same
custom controls to several context menus in the specified Ribbon. Say, the screenshots below demonstrate
component settings required for adding a control to the ExcelWorkbook Ribbon. To specify the context
menus to which the control will be added, you use the editor of the ContexMenuNames property of the
component.

http://msdn.microsoft.com/en-us/library/ee691833(office.14).aspx�
http://msdn.microsoft.com/en-us/library/ee691833(office.14).aspx�

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 52

See also Context Menu.

Step #9 – Handling Host Application Events

Add-n Express supplies several components that provide the application-level events for the add-in module
(see Host Application Events). To add Excel events to the add-in, find the TadxExcelAppEvents component
in the Tool Palette and drag-n-drop it onto the module. The TadxWordAppEvents component supplies the
module with Word events. Finally, you add TadxPowerPointAppEvents.

With the above components, you can handle any application-level events of the host application. Say, you
may want to disable a button when a window deactivates and enable it when a window activates. The code
processing the PowerPoint version of the WindowActivate and WindowDeactivate events is as follows:

procedure TAddInModule.adxPowerPointAppEvents1WindowActivate(
 ASender: TObject; const Pres: _Presentation; const Wn: DocumentWindow);
begin
 adxCommandBar1.Controls[0].Enabled := true;
end;

procedure TAddInModule.adxPowerPointAppEvents1WindowDeactivate(
 ASender: TObject; const Pres: _Presentation; const Wn: DocumentWindow);
begin
 adxCommandBar1.Controls[0].Enabled := false;
end;

It is possible to create a set of event handlers and connect it to any given Excel worksheet. You

can do this by adding a TExcelWorksheet (Tool Palette, the Servers tab) onto the add-in module.

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 53

Step #10 – Customizing the Office 2007-2010 Ribbon User Interface

To add a new tab to the Ribbon UI of the host application(s) of your add-in, you add the TadxRibbonTab
component to the module (see How to Add an Add-in Express Component to an Add-in Express Designer).

In the Object Inspector window, run the editor for the Controls collection of the Ribbon tab component. In the
editor, use the toolbar buttons or context menu to add or delete Add-in Express components that form the
Ribbon interface of your add-in. First, you add a Ribbon tab and change its caption to My Ribbon Tab. Then,
you select the tab component, add a Ribbon group, and change its caption to My Ribbon Group. Next, you
select the group, and add a button group. Finally, you select the button group and add a button. Set the
button caption to My Ribbon Button. Use the Glyph property to set the icon for the button.

Now write the following code in the OnClick event handler of the newly added Ribbon button (the code
below refers to the code added in Step #6 – Accessing Host Application Objects):

procedure TAddInModule.adxRibbonTab1Controls0Controls0Controls0Click(
 Sender: TObject; const RibbonControl: IRibbonControl);
begin
 DefaultAction(nil);
end;

Remember, the TadxRibbonTab.Controls editor performs the XML-schema validation automatically, so from
time to time you will run into the situation when you cannot add a control to some Ribbon level. It is a
restriction of the Ribbon XML-schema.

See also Office Ribbon Components.

Step #11 – Adding Custom Task Panes in Excel 2000-2010

Creating a new Excel task pane includes the following steps:

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 54

• add an Excel Task Panes Manager (TadxExcelTaskPanesManager) to your add-in module (see How to
Add an Add-in Express Component to an Add-in Express Designer)

• add an Add-in Express Excel Task Pane (TadxExcelTaskPane) to your project (see New Items Dialog)

• in the visual designer available for the Controls collection of the manager, add an item to the collection,
bind the pane to the item and specify its properties as shown on the screenshot.

Below is the description of the settings:

• AlwaysShowHeader - specifies that the pane header will be shown even if the pane is the only one in
the current region

• CloseButton - specifies if the Close button is
shown in the pane header. Obviously, there isn’t
much sense in setting this property to true when
the header is not shown.

• Position - specifies the region in which an
instance of the pane will be shown. Excel panes
are allowed in four regions docked to the four
sides of the main Excel window: pRight, pBottom,
pLeft, and pTop. The fifth region is pUnknown.

• TaskPaneClassName - specifies the class name of
the Excel task pane.

Now you add a label onto the pane and add an event
handler for the OnADXBeforeTaskPaneShow event:

procedure
TadxExcelTaskPane1.adxExcelTaskPaneADXBeforeTaskPaneShow(
 ASender: TObject; Args: TadxBeforeTaskPaneShowEventArgs);
begin
 Label1.Caption := (AddinModule as TAddInModule).GetInfoString();
end;

See also Advanced Custom Task Panes and Excel Task Panes.

Step #12 – Adding Custom Task Panes for PowerPoint 2000-2010

To add a PowerPoint task pane:

• add a PowerPoint Task Panes Manager (TadxPowerPointTaskPanesManager) to your add-in module
(see How to Add an Add-in Express Component to an Add-in Express Designer)

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 55

• add an Add-in Express PowerPoint Task Pane (TadxPowerPointTaskPane) to your project (see New
Items Dialog)

• in the visual designer available for the Controls collection of the manager, add an item to the collection,
bind the pane to the item and specify the appropriate value in the Position.

Now add a label onto the form, and update the label in the OnADXBeforeTaskPaneShow event handler of
the form:

procedure TadxPowerPointTaskPane1.adxPowerPointTaskPaneADXBeforeTaskPaneShow(
 ASender: TObject; Args: TadxBeforeTaskPaneShowEventArgs);
begin
 Label1.Caption := (AddinModule as TAddInModule).GetInfoString();
end;

See also Advanced Custom Task Panes.

Step #13 – Adding Custom Task Panes for Word 2000-2010

You add a Word task pane in the same manner:

• add a Word Task Panes Manager (TadxWordTaskPanesManager) to your add-in module (see How to
Add an Add-in Express Component to an Add-in Express Designer)

• add an Add-in Express Word Task Pane (TadxWordTaskPane) to your project (see New Items Dialog)

• in the visual designer available for the Controls collection of the manager, add an item to the collection,
bind the pane to the item and specify an appropriate value in the Position.

When the item's properties are set, you add a label onto the form, and write the code that updates it in the
OnADXBeforeTaskPaneShow event handler of your form:

procedure TadxWordTaskPane1.adxWordTaskPaneADXBeforeTaskPaneShow(
 ASender: TObject; Args: TadxBeforeTaskPaneShowEventArgs);
begin
 Label1.Caption := (AddinModule as TAddInModule).GetInfoString();
end;

See also Advanced Custom Task Panes.

Step #14 – Running the COM Add-in

Choose the Register ActiveX Server item in the Run menu, restart the host application(s) you selected, find
your toolbar and click the button. You can also find your add-in in the COM Add-ins Dialog.

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 56

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 57

Step #15 – Debugging the COM Add-in

To debug your add-in, just indicate the add-in host application in the Host Application field in the Project
Options window.

Add-in Express VCL Your First Microsoft Office COM Add-in

 page 58

Step #16 – Deploying the COM Add-in

Make sure your setup project registers the add-in DLL. Say, in Inno Setup projects you use the 'regserver'
command. See also:

• Registering with User Privileges

• GDIPLUS.DLL

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 59

Your First Microsoft Outlook COM Add-in

Add-in Express provides the Outlook-specific add-in module and two Outlook-specific command bar
components: TadxOlExplorerCommandBar and TadxOlInspectorCommandBar. The former adds a
command bar to the Outlook Explorer window and solves many problems with custom Outlook command
bars. The latter adds a command bar to the Outlook Inspector window. Both command bar components
have the FolderName, FolderNames and ItemTypes properties that add context-sensitivity to Outlook
command bars. The olExplorerItemTypes, olInspectorItemTypes, and olItemTypeAction properties add
context-sensitivity to Outlook command bar controls.

Additionally, Add-in Express Outlook Add-in wizards allows creating property pages to be added to the
Options (Tools | Options menu) and folder Properties dialogs.

The sample described below can be downloaded at http://www.add-in-express.com/support/addin-
delphi.php#outlook-addin.

Step #1 – Creating an Outlook COM Add-in Project

You use the Add-in Express Outlook Add-in project template available in the New Items Dialog of Delphi.

When you select the template and click OK, the project wizard starts. In the wizard windows, you choose the
project options, define task panes and option pages for your add-in.

http://www.add-in-express.com/support/addin-delphi.php#outlook-addin�
http://www.add-in-express.com/support/addin-delphi.php#outlook-addin�

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 60

The wizard creates and opens the COM Add-in project in the IDE.

The add-in project includes the following items:

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 61

• The project source files (ProjectName.*);

• The type library files (ProjectName_TLB.pas);

• The Outlook add-in module (ProjectName_IMPL.pas and
ProjectName_IMPL.dfm) discussed in the following step;

• The Outlook Property Page (PropertPage1.pas and
PropertPage1.dfm) discussed in
Property Pages to the Folder Properties Dialogs

Step #12 – Adding

Step #2 – Add-in Express COM Add-in Module

;

The add-in module (MyOutlookAddin1_IMPL.pas and
MyOutlookAddin1_IMPL.dfm) is the core part of the COM add-
in project (see COM Add-ins). It is the container of the Add-in Express components, which allow you to
concentrate on the functionality of your add-in. You specify the add-in properties in the module's properties,
add Add-in Express components to the module's designer, and write the functional code of your add-in in
this module.

The code for MyAddin1_IMPL.pas is as follows:

unit MyOutlookAddin1_IMPL;

interface

uses
 SysUtils, ComObj, ComServ, ActiveX, Variants, Office2000, adxAddIn,
MyOutlookAddin1_TLB, Outlook2000;

type
 TcoMyOutlookAddin1 = class(TadxAddin, IcoMyOutlookAddin1)
 end;

 TAddInModule = class(TadxCOMAddInModule)
 procedure adxCOMAddInModuleAddInInitialize(Sender: TObject);
 procedure adxCOMAddInModuleAddInFinalize(Sender: TObject);
 private
 protected
 procedure NameSpaceOptionsPagesAdd(ASender: TObject;
 const Pages: PropertyPages; const Folder: MAPIFolder); override;
 public
 end;

var
 adxcoMyOutlookAddin1: TAddInModule;

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 62

implementation

{$R *.dfm}

procedure TAddInModule.adxCOMAddInModuleAddInInitialize(Sender: TObject);
begin
 adxcoMyOutlookAddin1 := Self;
end;

procedure TAddInModule.adxCOMAddInModuleAddInFinalize(Sender: TObject);
begin
 adxcoMyOutlookAddin1 := nil;
end;

procedure TAddInModule.NameSpaceOptionsPagesAdd(ASender: TObject;
 const Pages: PropertyPages; const Folder: MAPIFolder);

 function GetFullFolderName(const AFolder: MAPIFolder): string;
 var
 IDisp: IDispatch;
 Folder: MAPIFolder;
 begin
 Result := '';
 Folder := AFolder;
 while Assigned(Folder) do begin
 Result := '\' + Folder.Name + Result;
 try
 IDisp := Folder.Parent;
 if Assigned(IDisp) then
 IDisp.QueryInterface(IID_MAPIFolder, Folder);
 except
 Break;
 end;
 end;
 IDisp := nil;
 Folder := nil;
 if Result <> '' then Delete(Result, 1, 1);
 end;

begin
 if GetFullFolderName(Folder) = 'Personal Folders\Inbox' then
 Pages.Add('MyOutlookAddin1.PropertyPage1', 'My Property Page');
end;

initialization

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 63

 TadxFactory.Create(ComServer, TcoMyOutlookAddin1, CLASS_coMyOutlookAddin1,
TAddInModule);

end.

The add-in module contains two classes: the “interfaced” class (TcoMyOutlookAddin1 in this case) and the
add-in module class (TAddInModule). The “interfaced” class is a descendant of the TadxAddIn class that
implements the IDTExtensibility2 interface required by the COM Add-in architecture. Usually you don't
need to change anything in the TadxAddIn class.

The add-in module class implements the add-in functionality. It is an analogue of the Data Module, but
unlike the Data Module, the add-in module allows you to set all properties of your add-in, handle its events,
and create toolbars and controls.

Step #3 – Add-in Express COM Add-in
Designer

The designer of Outlook add-in module allows setting
add-in properties and adding components to the module.

In this way, you can specify the name of your add-in
(AddInName) and the way it loads to the host application
(LoadBehavior). The typical value of the LoadBehavior
property is 3, which means Loaded & Connected.

To add an Add-in Express component to the add-in
module designer, you select it from the Tool Palette on
the Add-in Express tab and drag-n-drop onto the
designer.

Step #4 – Adding a New Explorer Command Bar

To add a command bar to the Outlook Explorer window, use the TadxOlExplorerCommandBar component
from the Add-in Express group in the Tool Palette.

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 64

Select the Outlook Explorer Command Bar component, and in the Object Inspector window, specify the
command bar name using the CommandBarName property and choose its position (see the Position
property). Outlook-specific versions of Add-in Express Command Bar component provide context-sensitive
properties, such as FolderName, FolderNames, and ItemTypes (see Outlook Command Bar Visibility Rules).

In the screenshot, you can see the Outlook Explorer command bar that is shown for every Outlook folder
(FolderName = ''), the default item types of which are Mail or Task.

See also Command Bars: Toolbars, Menus, and Context Menus.

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 65

Step #5 – Adding a New Command Bar Button

To add a new button to the Explorer command bar, you run the property editor for the Controls property in
the Object Inspector window. The editor allows adding command bar controls in a simple way.

Add a button to the toolbar, specify the button's Caption property and set the Style property to
adxMsoButtonIconAndCaption. To handle the Click event of the button, in the Object Inspector window,
switch to the Events tab and add the Click event handler:

Step #6 – Accessing Outlook Objects

Add-in Express provides the OutlookApp property of the TOutlookApplication type for Outlook add-ins.
This allows you to write the following code to the Click event of the added button.

procedure TAddInModule.DefaultActionInExplorer(
 Sender: TObject);
var
 IExplorer: _Explorer;
begin
 IExplorer := OutlookApp.ActiveExplorer;
 if Assigned(IExplorer) then
 begin
 ShowMessage('The subject is:' + CRLF + GetSubject(IExplorer));
 IExplorer := nil;
 end;
end;

function TAddInModule.GetSubject(
 const ExplorerOrInspector: IDispatch): string;
var
 IExplorer: _Explorer;
 ISelection: Selection;
 IInspector: _Inspector;
begin
 Result := '';
 if (ExplorerOrInspector <> nil) then
 begin

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 66

 ExplorerOrInspector.QueryInterface(IID__Explorer, IExplorer);
 if Assigned(IExplorer) then
 try
 try
 ISelection := IExplorer.Selection;
 except
 ISelection := nil;
 //skip an Outlook exception generated for a top-level folder,
 //say for the Personal Folders folder
 end;
 if Assigned(ISelection) then
 try
 if ISelection.Count > 0 then
 Result := OleVariant(ISelection.Item(1)).Subject;
 finally
 ISelection := nil;
 end;
 finally
 IExplorer := nil;
 end
 else
 begin
 ExplorerOrInspector.QueryInterface(IID__Inspector, IInspector);
 if Assigned(IInspector) then
 try
 Result := OleVariant(IInspector.CurrentItem).Subject;
 finally
 IInspector := nil;
 end;
 end;
 end;
end;

The code of the GetSubject method emphasizes the following:

• Outlook 2007 fires an exception when you try to obtain the Selection object in some situations.

• There may be no items in the Selection object.

Step #7 – Handling Outlook Events

Add-in Express provides several components that make host's events available for the add-in module (see
Host Application Events). To add Outlook events to the add-in, find the TadxOutlookAppEvents component
in the Tool Palette and drag-n-drop it onto the module. You can use the component to get access to the
events of all Outlook versions. If both TAddInModule and TadxOutlookAppEvents provide the same event,
you should use the event provided by TAddInModule. For instance, both TAddInModule and

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 67

TadxOutlookAppEvents provide the BeforeFolderSwitch event. According to the rule, we choose the event
provided by the add-in module and write the following code:

procedure TAddInModule. adxCOMAddInModuleOLExplorerBeforeFolderSwitch (
 ASender: TObject; const NewFolder: IDispatch; var Cancel: WordBool);
begin
 if (NewFolder <> nil) then
 ShowMessage('You are switching to the '
 + (NewFolder as MAPIFolder).Name + ' folder');
end;

Step #8 – Adding a New Inspector Command Bar

To add a command bar to Outlook Inspector windows, use the TadxOlInspectorCommandBar component
from the Add-in Express group in the Tool Palette.

The Inspector command bar component provides the same properties as the Explorer command bar
component. We use the default settings of the component in this sample. You should populate an Inspector
command bar with controls the way it’s described in Step #5 – Adding a New Command Bar Button. Add a
button to the command bar and display the subject of the currently open item using the following code that
handles the Click event of the button:

procedure TAddInModule.DefaultActionInInspector(
 Sender: TObject);
var
 IInspector: _Inspector;
begin
 IInspector := OutlookApp.ActiveInspector;
 if Assigned(IInspector) then
 begin
 ShowMessage('The subject is:' + CRLF + GetSubject(IInspector));

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 68

 IInspector := nil;
 end;
end;

To display an Inspector command bar in Office 2007-2010 you must explicitly set the

UseForRibbon property of the command bar component to True.

See also Command Bars: Toolbars, Menus, and Context Menus and Outlook Command Bar Visibility Rules.

Step #9 – Customizing Main Menus in Outlook

Outlook 2000-2003 provides two main menu types. They are available for two main types of Outlook
windows: Explorer and Inspector. Accordingly, Add-in Express provides two main menu components:
Explorer Main Menu component and Inspector Main Menu component (note the Ribbon UI replaces the
main menu of Inspector windows in Outlook 2007 and all main menus in Outlook 2010). You add either of
them using the context menu of the add-in module. Then you use the visual designer provided for the
Controls property of the component. For instance, to add a custom control to the popup shown by the File |
New item in all Outlook Explorer windows, you do the following:

• Use our free Built-in Control Scanner to scan the command bars and controls of Outlook

The screenshot below shows the result of scanning. You will need the Office IDs from the screenshot below
to bind Add-in Express controls to them:

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 69

• Add a popup control to the menu and set its
OfficeId property to 30002

• Add a popup control to the popup control
above and set its OfficeId to 30037

• Add a button to the popup above and specify
its properties.

In the sample add-in described in this chapter, the
BeforeId property of the My Item button is set to
1757, which is the ID of the Mail Message item. In
this way, we show the custom item before the Mail
Message one.

See also Using Built-in Command Bar Controls.

Step #10 – Customizing Context Menus in Outlook

Add-in Express allows customizing Outlook context menus via the Context Menu component. You use the
context menu of the add-in module to add such a component onto the module. Then you choose Outlook in
the SupportApp property of the component. Then, in the CommanBarName property, you choose the context
menu you want to customize. Finally, you add custom controls in the visual designer supplied for the
Controls property.

The sample add-in described in this chapter adds a custom item to the Folder Context Menu command bar
that implements the context menu which is shown when you right-click a folder in the folder tree.

Outlook 2000 context menus are not customizable.

Also, you can customize many Ribbon-based context menus in Outlook 2010. Find the
TadxRibbonContextMenu component on the Tool Palette and drop it on the add-in module. The component
allows specifying Ribbons that supply context menu names for the ContextMenuNames property. You use
the ContextMenuNames property editor to choose the context menu(s) that will display your custom controls
specified in the Controls property.

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 70

Step #11 – Handling Events of Outlook Items Object

The Outlook2000 unit contains the TItems component (of the TOleServer type). This component provides
the following events: OnItemAdd, OnItemChange, and OnItemRemove. To process these events, you add
the following declarations and code to the add-in module:

 TAddInModule = class(TadxCOMAddInModule)
...
 private
 ...
 procedure ItemsAdd(ASender: TObject; const Item: IDispatch);
 function GetIsFolderTracked: boolean;
 procedure SetIsFolderTracked(const Value: boolean);
 ...
 public
 ...
 Items: TItems;
 property IsFolderTracked: boolean read GetIsFolderTracked write
SetIsFolderTracked;
 ...
 end;
...
procedure TAddInModule.adxCOMAddInModuleAddInStartupComplete(Sender: TObject);
begin
 IsFolderTracked := true;
end;

procedure TAddInModule.adxCOMAddInModuleAddInBeginShutdown(Sender: TObject);
begin
 IsFolderTracked := false;
end;

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 71

procedure TAddInModule.SetIsFolderTracked(const Value: boolean);
begin
 if Assigned(ItemsEvents) then
 begin
 if not Value then
 begin
 ItemsEvents.Disconnect;
 ItemsEvents.Free;
 ItemsEvents := nil;
 end;
 end
 else if Value then
 begin
 ItemsEvents := TItems.Create(Self);
 ItemsEvents.OnItemAdd := ItemsAdd;
 ItemsEvents.ConnectTo(
 Self.OutlookApp.GetNamespace('MAPI').
 GetDefaultFolder(olFolderInbox).Items);
 end;
end;

function TAddInModule.GetIsFolderTracked: boolean;
begin
 if Assigned(ItemsEvents) then
 Result := Assigned(ItemsEvents.DefaultInterface)
 else
 Result := false;
end;

procedure TAddInModule.ItemsAdd(ASender: TObject; const Item: IDispatch);
var
 S: WideString;
begin
 S := '';
 try
 S := OleVariant(Item).Subject;
 except
 end;
 if (S <> '') then
 ShowMessage('The item with subject "' + S
 + '" has been added to the Inbox folder');
end;

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 72

Step #12 – Adding Property Pages to the Folder Properties Dialogs

Outlook allows you to add custom option pages to the Options dialog box (the Tools | Options menu) and /
or to the Properties dialog box of any folder. To automate this task, the Add-in Express wizard provides you
with the Option Pages window (see Step #1 – Creating an Outlook COM Add-in Project).

By default, a property page contains two controls only: a label and an edit box. The edit box gives you an
example of handling events of the controls on the property page.

procedure TPropertyPage1.Edit1Change(Sender: TObject);
begin
 GetPropertyPageSite;
 // TODO - put your code here
 UpdatePropertyPageSite;
end;

You add the TCheckBox component to the Property page, handle its OnClick event following the code
template above, and connect or disconnect the TItems component in the Apply method. You initialize the
check box in the Initialize method of the property page:

function TcoPropertyPage1.Apply: HResult;
begin
 adxcoMyOutlookAddin1.IsFolderTracked := CheckBox1.State = cbChecked;
 FDirty := False;
 Result := S_OK;
end;

procedure TPropertyPage1.Initialize;
begin
 ...
 if (adxcoMyOutlookAddin1.IsFolderTracked) then
 begin
 if (CheckBox1.State <> cbChecked) then
 CheckBox1.State := cbChecked;
 end
 else
 if (CheckBox1.State <> cbUnchecked) then
 CheckBox1.State := cbUnchecked;
end;

See also Outlook Property Page.

Step #13 – Intercepting Keyboard Shortcuts

To intercept a keyboard shortcut, you add a TadxKeyboardShortcut component to the add-in module:

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 73

In the Object Inspector window you select (or enter) the desired shortcut in the ShortcutText property. We
chose the shortcut for the Send button in the Standard command bar of the mail Inspector. It is Ctrl+Enter.

To use keyboard shortcuts, you need to set the HandleShortcuts property of the add-in module to

true.

Now you can handle the Action event of the component:

procedure TAddInModule.adxKeyboardShortcut1Action(Sender: TObject);
begin
 ShowMessage('You`ve pressed ' +
 TadxKeyboardShortcut(Sender).ShortcutText);
end;

Step #14 – Customizing the Outlook 2007-2010 Ribbon User Interface

To add a new tab to the Ribbon, you add the TadxRibbonTab component to the module.

In the Object Inspector window, run the editor for the Controls collection of the Ribbon tab component. In the
editor, use the toolbar buttons or context menu to add or delete Add-in Express components that form the
Ribbon interface of your add-in. First, you add a Ribbon tab and change its caption to My Ribbon Tab. Then,
you select the tab component, add a Ribbon group, and change its caption to My Ribbon Group. Next, you
select the group, and add a button group. Finally, you select the button group and add a button. Set the
button caption to My Ribbon Button. Use the Glyph property to set the icon for the button.

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 74

Now add the event handler to the Click event of the button and write the following code:

procedure TAddInModule.adxRibbonTab1Controls0Controls0Controls0Click(Sender:
TObject; const RibbonControl: IRibbonControl);
begin
 DefaultActionInInspector(nil);
end;

Remember, the TadxRibbonTab.Controls editor performs the XML-schema validation automatically, so from
time to time you will run into the situation when you cannot add a control to some Ribbon level. It is a
restriction of the Ribbon XML-schema.

Unlike other Ribbon-based applications, Outlook has numerous ribbons. Please use the Ribbons property of
your TadxRibbonTab components to specify the ribbons you customize with your tabs.

See also Office Ribbon Components.

Step #15 – Adding Custom Task Panes in Outlook 2000-2010

As described in Advanced Custom Task Panes, you add an Outlook Forms Manager component
(TadxOlFormsManager) to your add-in module and an Add-in Express Outlook Form to your project (see
New Items Dialog) .

Then you add an item to the Items collection of the manager and specify the following properties:

• ExplorerItemTypes = expMailItem – your form will be shown for all mail folders;

• ExplorerLayout = elBottomSubpane – an instance of the form will be shown below the list of mails in
Outlook Explorer windows;

• InspectorItemTypes = insMail – your task pane will be shown whenever you open an e-mail;

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 75

• InspectorLayout = ilBottomSubpane – an
instance of the form will be shown to the right
of the message body;

• AlwaysShowHeader = True – the header
containing the icon (a 16x16 .ico) and the
caption of your form (see the Icon and
Caption properties of your form) will be
shown for your form even if it is a single form
in the given region;

• CloseButton = True – the header will contain
the Close button; a click on it generates the
OnADXBeforeCloseButtonClick event of the
form

• FormClassName =TadxOlForm1 – the class
name of the form whose instances will be
shown in the regions specified by the
ExplorerLayout and/or InspectorLayout
properties.

On the form, you add a label and handle, say, the
OnADXSelectionChange event of the form:

procedure
TadxOlForm1.adxOlFormADXSelectionChange(Sender: TObject);
begin
 RefreshMe();
end;

procedure TadxOlForm1.RefreshMe;
var
 module: TAddinModule;
begin
 module := (self.AddinModule as TAddinModule);
 if (self.InspectorObj <> nil) then
 Label1.Caption := module.GetSubject(self.InspectorObj)
 else if (self.ExplorerObj <> nil) then
 Label1.Caption := module.GetSubject(self.ExplorerObj);
end;

The GetSubject method above retrieves the subject of the e-mail currently open in the Outlook Inspector
window or the one selected in the current Explorer window.

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 76

Step #16 – Running the COM Add-in

Choose the Register ActiveX Server item in the Run menu, then restart Outlook and find your option
page(s), command bars, and controls. Note that your add-in is also listed in the COM Add-ins Dialog.

Add-in Express VCL Your First Microsoft Outlook COM Add-in

 page 77

Step #17 – Debugging the COM Add-in

To debug your add-in, just indicate the add-in host application in the Host Application field in the Project
Options window.

Step #18 – Deploying the COM Add-in

Make sure your setup project registers the add-in DLL. For example, in Inno Setup projects you use the
'regserver' command. See also:

• Registering with User Privileges

• GDIPLUS.DLL

Add-in Express VCL Your First Excel RTD Server

 page 78

Your First Excel RTD Server

You can download this sample at http://www.add-in-express.com/support/addin-delphi.php#rtd.

Step #1 – Creating a New Add-in Express RTD Server Project

Add-in Express adds the Add-in Express RTD Server project template to the New Items Dialog.

When you select the template and click OK, the RTD Server project wizard starts. You choose the project
options in the wizard windows.

http://www.add-in-express.com/support/addin-delphi.php#rtd�

Add-in Express VCL Your First Excel RTD Server

 page 79

The project wizard creates and opens the RTD server project in the IDE.

The RTD server project includes the following items:

Add-in Express VCL Your First Excel RTD Server

 page 80

• The project source files (ProjectName.*);

• The type library files: binary (ProjectName.tlb) and Object Pascal
unit (ProjectName_TLB.pas);

• The RTD server module (ProjectName_IMPL.pas and
ProjectName_IMPL.dfm) discussed in the following step.

Step #2 – Add-in Express RTD Server Module

The RTD server module (MyRtdServer1_IMPL.pas and MyRtdServer1_IMPL.dfm) is the core part of the RTD
server project. The module is the container for TadxRTDTopic components.

The code of MyRtdServer1_IMPL.pas is as follows:

unit MyRtdServer1_IMPL;

interface

uses
 SysUtils, Classes, ComServ, MyRtdServer1_TLB, adxRTDServ;

type
 TcoMyRtdServer1 = class(TadxRTDServer, IcoMyRtdServer1);

 TRTDServerModule = class(TadxXLRTDServerModule)
 private
 protected
 public
 end;

implementation

{$R *.dfm}

initialization
 TadxRTDFactory.Create(ComServer, TcoMyRtdServer1, CLASS_coMyRtdServer1,
TRTDServerModule);

end.

Add-in Express VCL Your First Excel RTD Server

 page 81

Step #3 – Add-in Express RTD Server Designer

The module designer allows setting RTD server properties and adding components to the module.

You set the properties of your RTD server module in the Object
Inspector window (see RTD Servers).

The only Add-in Express component available for the module is
the TadxRTDTopic component (see RTD Topic).

Step #4 – Adding and Handling a New Topic

To add a new topic to your RTD server, find the TadxRTDTopic component in the Tool Palette and drag-n-
drop it onto the RTD server module (see RTD Topic).

Select the newly added component and, in the Object Inspector
window, specify the topic using the String## properties.

Write your code to handle the RefreshData event of the RTD
Topic component:

function TRTDServerModule.adxRTDTopic1RefreshData(Sender: TObject): OleVariant;
begin
 Result := RandomRange(-100, 100);
end;

Add-in Express VCL Your First Excel RTD Server

 page 82

Step #5 – Running the RTD Server

Choose the Register ActiveX Server item in the Run menu, restart Excel, and enter the RTD function to a
cell.

Step #6 – Debugging the RTD Server

To debug your RTD server, just indicate Excel as the Start Program in the Project Options window.

Add-in Express VCL Your First Excel RTD Server

 page 83

Step #7 – Deploying the RTD Server

Make sure your setup project registers the RTD server DLL (or EXE). Say, in Inno Setup projects you use
the 'regserver' command. If you use the Register with User Privileges option, please read the following:

• Registering with User Privileges

Add-in Express VCL Your First Smart Tag

 page 84

Your First Smart Tag

You can download this sample at http://www.add-in-express.com/support/addin-delphi.php#smart-tag.

Step #1 – Creating a New Smart Tag Library Project

Add-in Express adds the Add-in Express COM Add-in project template to the New Items Dialog.

When you select the template and click OK, the Smart Tag project wizard starts. In the wizard windows, you
choose the project options.

http://www.add-in-express.com/support/addin-delphi.php#smart-tag�

Add-in Express VCL Your First Smart Tag

 page 85

The project wizard creates and opens the Smart Tag project in the IDE.

The smart tag project includes the following items:

• The project source files (ProjectName.*);

• The type library files: binary (ProjectName.tlb) and Object Pascal
unit (ProjectName_TLB.pas);

• The smart tag module (ProjectName_IMPL.pas and
ProjectName_IMPL.dfm) discussed in the following step.

Step #2 – Add-in Express Smart Tag Module

The smart tag module (MySmartTag1_IMPL.pas and MySmartTag1_IMPL.dfm) is the core part of the smart
tag project. The smart tag module is a container for TadxSmartTag components.

The code for MySmartTag1_IMPL.pas is as follows:

unit MySmartTag1_IMPL;

interface

uses

Add-in Express VCL Your First Smart Tag

 page 86

 SysUtils, ComObj, ComServ, ActiveX, Variants, adxSmartTag, adxSmartTagTLB,
MySmartTag1_TLB;

type
 TcoMySmartTag1Recognizer = class(TadxRecognizerObject,
IcoMySmartTag1Recognizer)
 protected
 end;

 TcoMySmartTag1Action = class(TadxActionObject, IcoMySmartTag1Action)
 protected
 end;

 TSmartTagModule = class(TadxSmartTagModule)
 private
 protected
 public
 end;

implementation

{$R *.dfm}

initialization
 TadxRecognizerFactory.Create(ComServer, TcoMySmartTag1Recognizer,
 CLASS_coMySmartTag1Recognizer, TSmartTagModule);

 TadxActionFactory.Create(ComServer, TcoMySmartTag1Action,
 CLASS_coMySmartTag1Action, TSmartTagModule);

end.

The smart tag module contains three classes:

• The “interfaced” classes (TcoMySmartTag1Recognizer and TMySmartTag1Action);

• The smart tag module class (TSmartTagModule).

The “interfaced” classes are descendants of the TadxRecognizerObject class and the TadxActionObject
class that implement the smart tag specific interfaces required by the smart tag architecture:
ISmartTagRecognizer, ISmartTagRecognizer2, ISmartTagAction and ISmartTagAction2. Usually you don't
need to change anything in these classes.

In the smart tag module class, we write the functionality to be implemented by the smart tag. The smart tag
module is an analogue of the Data Module, but unlike the Data Module, the smart tag module allows you to
set all properties of your smart tags.

Add-in Express VCL Your First Smart Tag

 page 87

Step #3 – Add-in Express Smart Tag Designer

In the Project Manager window, select the smart tag module,
activate the Object Inspector window, specify your smart tag
name in the SmartTagName property (this name appears in
the Smart Tags tab on the host application AutoCorrect
Options dialog box), and enter the description of the smart
tag through the SmartTagDesc property. These properties
depend on Office localization.

The designer of Smart Tag module allows setting smart tag library properties and adding TadxSmartTag
components to the module.

See also Smart Tags.

Step #4 – Adding a New Smart Tag

To add a new Smart Tag to your library, find the TadxSmartTag component in the Tool Palette and drag-n-
drop it onto the Smart Tag Module (see Smart Tag).

In the Object Inspector window, specify the caption for the
added smart tag in the Caption property. The value of this
property will become a caption of the smart tag context
menu. Also, specify the phrase(s) recognizable by the smart
tag in the RecognizedWords string collection.

Say, in this sample Smart Tag, the words are the following:

Add-in Express VCL Your First Smart Tag

 page 88

Step #5 – Adding and Handling Smart Tag Actions

To add a new smart tag action, right-click the smart tag component,
select the Smart Tag Actions item on the pop-up menu, and, in the
Editing window, click the Add New button. Select the action in the Editing
window, activate the Object Inspector window, and fill in the Caption
property. It depends on Locale. The value of the Caption property is
shown as an item of the smart tag context menu (pop-up).

To handle the click event of this menu item, select the Events tab of the Object Inspector, double click the
OnClick event, and enter your code:

procedure TSmartTagModule.adxSmartTag1Actions0Click(Sender: TObject;
 const AppName: WideString; const Target: IDispatch; const Text,
 Xml: WideString; LocaleID: Integer);
begin
 ShowMessage('Recognized text is ' + Text);
end;

Step #6 - Running Your Smart Tag

Choose the Register ActiveX Server item in the Run menu, restart Word, enter the words recognizable by
your smart tag into a document, and see if the smart tag works.

Add-in Express VCL Your First Smart Tag

 page 89

In Office 2003-2003, choose the Tools | AutoCorrect menu item and find your smart tag on the Smart Tags
tab. In Office 2007, the path to this dialog is as follows: Office button | Word Options | Add-ins | "Manage"
Smart Tags | Go. In Office 2010, see File tab | Options | Add-ins | "Manage" Actions | Go.

Add-in Express VCL Your First Smart Tag

 page 90

Step #7 – Debugging the Smart Tag

To debug your Smart Tag, just indicate the add-in host application as the Start Program in the Project
Options window.

Step #8 – Deploying the Smart Tag

Make sure your setup project registers the smart tag DLL. Say, in Inno Setup projects you use the
'regserver' command. If you use the Register with User Privileges option, please read the following:

• Registering with User Privileges

Add-in Express VCL Your First Excel Automation Add-in

 page 91

Your First Excel Automation Add-in

You can download this sample at http://www.add-in-express.com/support/addin-delphi.php#excel-
automation.

The fact is that Excel Automation Add-ins do not differ from COM Add-ins except for the registry entries.
That's why Add-in Express bases Excel Automation Add-in projects on Add-in Express COM Add-in
projects.

Step #1 – Creating a New COM Add-in Project

Add-in Express adds the Add-in Express COM Add-in project template to the New Items Dialog.

When you select the template and click OK, the Add-in Express COM Add-in wizard starts. You choose the
necessary project options in the wizard windows.

http://www.add-in-express.com/support/addin-delphi.php#excel-automation�
http://www.add-in-express.com/support/addin-delphi.php#excel-automation�

Add-in Express VCL Your First Excel Automation Add-in

 page 92

The project wizard creates and opens the COM Add-in project in the IDE.

The add-in project includes the following items:

• The project source files (ProjectName.*);

• The type library files: binary (ProjectName.tlb) and Object Pascal unit (ProjectName_TLB.pas);

• The add-in module (ProjectName_IMPL.pas and ProjectName_IMPL.dfm) discussed in Your First
Microsoft Office COM Add-in.

Add-in Express VCL Your First Excel Automation Add-in

 page 93

Step #2 – Involving Excel Automation Add-in Functionality

Before you start adding Excel user-defined functions to the COM Add-in, you set the XLAutomationAddin
property of the add-in module to true.

Step #3– Creating User-Defined Functions

Open the project type library (View | Type Library menu). Add a new method to the type library and define its
parameters.

Add-in Express VCL Your First Excel Automation Add-in

 page 94

Click the Refresh button and write your code to the TcoMyExcelAutomationAddin1.MyFunc function:

function TcoMyExcelAutomationAddin1.MyFunc(var Range: OleVariant): OleVariant;
begin
 Result := 0;
 case VarType(Range) of
 varSmallint, varInteger, varSingle,
 varDouble, varCurrency, varShortInt, varByte,
 varWord, varLongWord, varInt64: Result := Range * 1000;
 else
 try
 Result := Range.Cells[1, 1].Value * 1000;
 except
 Result := CVErr(xlErrValue);
 end;
 end;
end;

Step #4 – Running the Excel Automation Add-in

Choose the Register ActiveX Server item in the Run menu, restart Excel, and check if your add-in works.

Add-in Express VCL Your First Excel Automation Add-in

 page 95

Step #5 – Debugging the Excel Automation Add-in

To debug your add-in, just indicate the add-in host application as the Start Program in the Project Options
window.

Add-in Express VCL Your First Excel Automation Add-in

 page 96

Step #6 – Deploying the Excel Automation Add-in

Make sure your setup project registers the add-in DLL. Say, in Inno Setup projects you use the 'regserver'
command. See also:

• Registering with User Privileges

• GDIPLUS.DLL

Add-in Express VCL Add-in Express Tips and Notes

 page 97

Add-in Express Tips and Notes

Terminology

In this document, on our site, and in all our texts we use the terminology suggested by Microsoft for all
toolbars, their controls, and for all interfaces of the Office Type Library. For example:

• Command bar is a toolbar, a menu bar, or a context menu.

• Command bar control is one of the following: a button, an edit box, a combo box, or a pop-up.

• Pop-up can stand for a pop-up menu, a pop-up button on a command bar or a submenu on a menu bar.

Add-in Express uses interfaces from the Office Type Library. We do not describe them here. Please refer to
the VBA help and to the application type libraries.

Getting Help on COM Objects, Properties and Methods

To get assistance with host applications’ objects, their properties and methods as well as help info, use the
Object Browser. Go to the VBA environment (in the host application, choose menu Tools / Macro / Visual
Basic Editor or just press Alt+F11), press F2, select the host application (also Office and MSForms) in the
topmost combo and/or specify a search string in the search combo.

COM Add-ins Dialog

In version 2007 of Word, Excel, PowerPoint and Access you click the Office Menu button, then click {Office
application} options and choose the Add-ins tab. Now choose COM Add-ins in the Manage dropdown and
click Go.

In all other Office applications, you need to add the COM Add-ins command to a toolbar or menu of your
choice. To do so, follow the steps below:

• Open the host application (Outlook, Excel, Word, etc)

• On the Tools menu, click Customize.

• Click the Commands tab.

• In the Categories list, click the Tools category.

• In the Commands list, click COM Add-Ins and drag it to a toolbar or menu of your choice.

In Office 2000-2003, this dialog shows add-in registered in HKCU only. In Office 2007, HKLM-registered
add-ins are shown as well.

Add-in Express VCL Add-in Express Tips and Notes

 page 98

How to Get Access to the Add-in Host Applications

In the add-in module, Add-in Express wizards generate the <HostName>App properties. They return the
Application object (of the OleVariant type) of the host application in which the add-in is currently running.
To identify the host application, you can also use the HostType property of the module.

Registry Entries

COM Add-ins registry entries are located in the following registry branches:

HKEY_CURRENT_USER\Software\Microsoft\Office\<OfficeApplication>\AddIns\<Add-in
ProgID>
HKEY_CLASSES_ROOT\CLSID\<Add-in Express Project GUID>

ControlTag vs. Tag Property

Add-in Express identifies all its controls (command bar controls) by the ControlTag property (the Tag
property of the CommandBarControl interface). The value of this property is generated automatically and
you do not need to change it. For your own needs, use the Tag property instead.

Pop-ups

According to the Microsoft terminology, the term “pop-up” can be used for several controls: pop-up menu,
pop-up button, and submenu. With Add-in Express, you can create your own pop-up as an element of your
controls command bar collection and add any control to it via the Controls property.

However, pop-ups have an annoying feature: if an edit box or a combo box is added to a pop-up, their
events are fired very oddly. Please don’t regard this bug as that of Add-in Express.

Edits and Combo Boxes and the Change Event

The Change event appears only when the value was changed and the focus was shifted. This is by design.

Built-in Controls and Command Bars

You can connect an Add-in Express command bar instance to any built-in command bar. For example, you
can add your own controls to the "Standard" command bar or remove some controls from it. To do this just
add a new Add-in Express Command Bar instance to the add-in module and specify the name of the built-in
command bar you need via the CommandBarName property.

Add-in Express VCL Add-in Express Tips and Notes

 page 99

In addition, you can add any built-in controls to your own command bars. To do this just add an
ADXCommandBarControl instance to the ADXCommandBar.Controls collection and specify the ID of the
built-in control you need via the Id property.

CommandBar.SupportedApps

Use this property to specify if the command bar is to appear in some or all host applications supported by
the add-in.

Outlook Command Bar Visibility Rules

You can use the FolderName, FolderNames and ItemTypes properties to bind your toolbars to certain
Outlook folders. Your toolbar is shown for a folder:

• If its full name (includes the folder path) is found in the FolderName or FolderNames properties.

• Or if the folder type is found in the ItemTypes property.

Removing Custom Command Bars and Controls

Add-in Express removes custom command bars and controls when the add-in is uninstalled. However, this
does not apply to Outlook and Access add-ins. You should set the Temporary property of custom command
bars (and controls) to true to notify the host application that it can remove them itself. If you need to remove
a toolbar or button yourself, use the Tools | Customize dialog.

My Add-in Is Always Disconnected

If your add-in fires exceptions at the startup, the host application can block the add-in and move it to the
Disabled Items list. To find the list, go to "Help" in the host application and then click "About". At the bottom
of the About dialog, there is the Disabled Items button. Check it to see if the add-in is listed there (if so,
select it and click the enable button).

Update Speed for an RTD Server

Microsoft limits the minimal interval between updates to 2 seconds. There is a way to change this minimum
value but Microsoft doesn't recommend doing this.

Sequence of Events When an Office 2007 Task Pane Shows up

• AddinModule.OnTaskPaneBeforeCreate

Add-in Express VCL Add-in Express Tips and Notes

 page 100

• AddinModule.OnTaskPaneAfterCreate

• AddinModule.OnTaskPaneBeforeShow

• TaskPane.OnVisibleStateChange

• AddinModule.OnTaskPaneAfterShow

Adding an Office 2007 Task Pane to an Existing Add-in Express Project

• Add an instance of ActiveForm to the project (File | New | Other | ActiveX | Active Form)

• Change its AxBorderStyle property to afbNone.

• Add the following declaration to the private section of the ActiveForm

procedure WMMouseActivate(var Message: TWMMouseActivate); message
WM_MOUSEACTIVATE;

• Change the method code to the following:

var
 FocusedWindow: HWND;
 CursorPos: TPoint;
begin
 inherited;
 FocusedWindow := Windows.GetFocus;
 if not SearchForHWND(Self, FocusedWindow) then begin
 Windows.GetCursorPos(CursorPos);
 FocusedWindow := WindowFromPoint(CursorPos);
 Windows.SetFocus(FocusedWindow);
 Message.Result := MA_ACTIVATE;
 end;

• Add the following function used by the WMMouseActivate method (place it before the method):

function SearchForHWND(const AControl: TWinControl; Focused: HWND): boolean;
var
 i: Integer;
begin
 Result := (AControl.Handle = Focused);
 if not Result then
 for i := 0 to AControl.ControlCount - 1 do
 if AControl.Controls[i] is TWinControl then begin
 if TWinControl(AControl.Controls[i]).Handle = Focused then begin
 Result := True;
 Break;
 end

Add-in Express VCL Add-in Express Tips and Notes

 page 101

 else
 if TWinControl(AControl.Controls[i]).ControlCount > 0 then begin
 Result := SearchForHWND(TWinControl(AControl.Controls[i]),
Focused);
 if Result then Break;
 end;
 end;
end;

• Add and override the ActiveForm destructor using the following code:

destructor TMyTaskPane.Destroy;
var
 ParkingHandle: HWND;
begin
 ParkingHandle := FindWindowEx(0, 0, 'DAXParkingWindow', nil);
 if ParkingHandle <> 0 then
 SendMessage(ParkingHandle, WM_CLOSE, 0, 0);
 inherited Destroy;
end;

• Now you add an item to the TaskPanes collection of TAddinModule and set its ControlProgID property
to the ProgID of the ActiveForm – just select it from the dropdown list.

• Remember about the Title property – the host application generates an exception if this property is left
empty.

• Clear the Target File Extension field in the project properties (Project | Options | Application).

Temporary or Not?

According to the help reference for the Office object model contained within Office.DLL (see Getting Help on
COM Objects, Properties and Methods), temporary command bars and controls are removed by the host
application when it is closed.

Normally, the developer has the following alternative: if command bars and controls are temporary, they are
recreated whenever the add-in starts; if they are non-temporary, the installer removes those command bars
and controls from the host. Looking from another angle, you will see that the real alternative is the time
required for start-up against the time required for uninstalling the add-in (the host must be run to remove
command bars).

Outlook and Word are two exceptions. It is strongly recommended that you use temporary command bars
and controls in Outlook add-ins. If they are non-temporary, Add-in Express must run Outlook to remove
them. Now imagine password-protected PST and multiple-profile scenarios.

In Word add-ins, we strongly advise making both command bars and controls non-temporary. Word
removes temporary command bars. However, it does not remove temporary command bar controls, at least

Add-in Express VCL Add-in Express Tips and Notes

 page 102

not all of them. When the add-in starts for the second time, Add-in Express finds such controls and just
connects to them. In this way, it processes the user-moved-or-deleted-the-control scenario. Accordingly, the
controls are missing in the UI.

Note that main and context menus are command bars. That is, in Word add-ins, custom controls added to
these components must have Temporary = False as well. If you set Temporary to true for such
controls, they will not be removed when you uninstall your add-in. That happens because Word has another
peculiarity: it saves temporary controls when they are added to a built-in command bar. And all context
menus are built-in command bars. To remove such controls, you will have to write some code or use a
simple way: set Temporary to false for all controls, register the add-in on the affected PC, run Word. At this
moment, the add-in finds this control and traces it from this moment on. Accordingly, when you unregister
the add-in, the control is removed in a standard way.

Registering with User Privileges

When you use this option of the project wizard, all COM objects are registered in HKCU/Software/Classes
instead of HKLM/Software/Classes. This allows registering COM objects with non-admin privileges.

To support this option, Add-in Express modifies the code of the <project name>.dpr file and creates a
special <project name>.ini. When you deploy the project created with this option, you should place the
<project name>.ini and <project name>.dll files in the same location.

Restrictions:

• This works on Windows 2000+ only.

• The TAddinModule.RegisterForAllUsers property is ignored if you use the Register with User Privileges
option.

• RTD servers in EXE cannot be registered for the current user, so this option will be ignored if selected.

When modifying existing projects, you should do the following:

• Add the following code to the <project name>.dpr file:

...
uses
...
ComObj, Windows, adxAddIn,
...

type
 TDummyComServer = class(TObject)
 private
 procedure FactoryRegister(Factory: TComObjectFactory);
 procedure FactoryUnRegister(Factory: TComObjectFactory);

Add-in Express VCL Add-in Express Tips and Notes

 page 103

 end;

procedure TDummyComServer.FactoryRegister(Factory: TComObjectFactory);
begin
 UpdateFactory(Factory, True);
end;

procedure TDummyComServer.FactoryUnRegister(Factory: TComObjectFactory);
begin
 UpdateFactory(Factory, False);
end;

function DllRegisterServer: HResult;
begin
 Result := E_FAIL;
 try
 if CheckConfigSection() then begin
 RegisterToHKCU := True;
 with TDummyComServer.Create do
 try
 ComClassManager.ForEachFactory(ComServer, FactoryRegister);
 finally
 Free;
 end;
 Result := S_OK;
 end;
 except
 end;
 if Result <> S_OK then Result := ComServ.DllRegisterServer();
end;

function DllUnregisterServer: HResult;
begin
 Result := E_FAIL;
 try
 if CheckConfigSection() then begin
 RegisterToHKCU := True;
 with TDummyComServer.Create do
 try
 ComClassManager.ForEachFactory(ComServer, FactoryUnRegister);
 finally
 Free;
 end;
 Result := S_OK;
 end;
 except

Add-in Express VCL Add-in Express Tips and Notes

 page 104

 end;
 if Result <> S_OK then Result := ComServ.DllUnregisterServer();
end;

exports
...

• Create the <project name>.ini file in the project directory and modify its contents as follows:

[Config]
Privileges=User

GDIPLUS.DLL

This is the Microsoft Windows GDI+ library providing two-dimensional vector graphics, imaging, typography,
etc. GDI+ improves on the Windows Graphics Device Interface (GDI) by adding new features and by
optimizing existing features. It is required as a redistributable for COM Add-ins based on Add-in Express
2009 for VCL that run on the following operating systems: Microsoft Windows NT 4.0 SP6, Windows 2000,
Windows 98, and Windows Millennium Edition (Windows Me).

This file must be located in the folder where your COM add-in is registered.

Sharing Ribbon Controls Across Multiple Add-ins

First off, you assign the same string value to the TAddinModule.Namespace property of every add-in that
will share your Ribbon controls. This makes Add-in Express to add two xmlns attributes to the customUI tag
in the resulting xml markup:

• xmlns:default="%ProgId of your add-in, say TAddinModule.COMAddInClassFactory.ProgID%",

• xmlns:shared="%the value of the TAddinModule.Namespace property%".

Originally, all Ribbon controls are located in the default namespace (id="%Ribbon control's id%" or
idQ="default:%Ribbon control's id%") and you have a full control over them via the callbacks provided by
Add-in Express. When you specify the Namespace property, Add-in Express changes the markup to use
idQ's instead of id's.

Then, in all add-ins that should share a Ribbon control, you set the Shared property to True for the control
with the same Id (you can change the Id's to match), For the Ribbon control whose Shared property is True,
Add-in Express changes its idQ to use the shared namespace (idQ="shared:%Ribbon control's id%")
instead of the default one. Also, for such Ribbon controls, Add-in Express cuts out all callbacks and replaces
them with "static" versions of the attributes. Say, getVisible="GetVisible_CallBack" will be replaced with
visible="%value%".

Add-in Express VCL Add-in Express Tips and Notes

 page 105

The shareable Ribbon controls are the following Ribbon container controls:

• Ribbon Tab - TadxRibbonTab

• Ribbon Box - TadxRibbonBox

• Ribbon Group - TadxRibbonGroup

• Ribbon Button Group - TadxRibbonButtonGroup

When referring to a shared Ribbon control in the BeforeId and AfterId properties of another Ribbon control,
you use the shared controls' idQ: %namespace abbreviation% + ':' + %control id%. The abbreviations of
these namespaces are available in the adxDefaultNS and adxSharedNS constants ('default' and
'shared' string values).

The resulting XML markup may look like this:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:default="MyOutlookAddin1.coMyOutlookAddin1"
 xmlns:shared="MyNameSpace" [callbacks omitted]>
 <ribbon>
 <tabs>
 <tab idQ=" shared:adxRibbonTab1" visible="true" label="My Tab">
 <group idQ="default:adxRibbonGroup1" [callbacks omitted]>
 <button idQ="default:adxRibbonButton1" [callbacks omitted]/>
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

In the XML-code above, the add-in creates a shared tab with a private group containing a button.

Final Note

If your questions are not answered here, please see the HOWTOs section on www.add-in-express.com. We
are adding sample projects to these pages. A number of sample projects are zipped and published at
http://www.add-in-express.com/downloads/adxvcl.php.

http://www.add-in-express.com/�
http://www.add-in-express.com/downloads/adxvcl.php�

	Introduction
	Why Add-in Express?
	Add-in Express Products

	System Requirements
	Supported Delphi Versions
	Host Applications
	COM Add-ins
	Real-Time Data Servers
	Smart Tags

	Technical Support
	Installing and Activating
	Activation Basics
	Setup Package Contents
	Solving Installation Problems

	Getting Started
	Creating Add-in Express Projects
	New Items Dialog
	COM Add-ins
	RTD Servers
	Smart Tags
	Excel Automation Add-ins
	Excel Workbooks
	Word Documents

	Add-in Express Components
	How to Add an Add-in Express Component to an Add-in Express Designer
	Office Ribbon Components
	Task Panes
	Advanced Custom Task Panes in Office 2000-2010
	Custom Task Panes in Office 2007-2010

	Command Bars: Toolbars, Menus, and Context Menus
	Toolbar
	Main Menu
	Context Menu
	Outlook Toolbars and Main Menus
	Connecting to Existing Command Bars

	Command Bar Controls
	Command Bar Control Properties and Events
	Command Bar Control Types
	Using Built-in Command Bar Controls

	Built-in Control Connector
	Keyboard Shortcut
	Outlook Bar Shortcut Manager
	Outlook Property Page
	Outlook Forms Manager, Excel Task Panes Manager, Word Task Panes Manager, PowerPoint Task Panes Manager
	Smart Tag
	RTD Topic
	Host Application Events
	MSForms Controls

	Advanced Custom Task Panes
	An Absolute Must-Know
	Hello, World!
	The Regions
	Word, Excel and PowerPoint Regions
	Outlook Regions

	The UI Mechanics
	The UI, Related Properties and Events
	The Close Button and the Header
	Showing/Hiding Form Instances Programmatically
	Resizing the Forms
	Tuning the Settings at Run-Time

	Excel Task Panes
	Application-specific features
	Keyboard and Focus
	Wait a Little and Focus Again

	Advanced Outlook Regions
	Context-Sensitivity of Your Outlook Form
	Caching Forms
	Is It Inspector or Explorer?
	WebViewPane

	Sample Projects
	Your First Microsoft Office COM Add-in
	Step #1 – Creating an Add-in Express COM Add-in Project
	Step #2 – Add-in Express COM Add-in Module
	Step #3 – Add-in Express COM Add-in Designer
	Step #4 – Adding a New Command Bar
	Step #5 – Adding a New Command Bar Button
	Step #6 – Accessing Host Application Objects
	Step #7 - Customizing Main Menus
	Step #8 – Customizing Context Menus
	Step #9 – Handling Host Application Events
	Step #10 – Customizing the Office 2007-2010 Ribbon User Interface
	Step #11 – Adding Custom Task Panes in Excel 2000-2010
	Step #12 – Adding Custom Task Panes for PowerPoint 2000-2010
	Step #13 – Adding Custom Task Panes for Word 2000-2010
	Step #14 – Running the COM Add-in
	Step #15 – Debugging the COM Add-in
	Step #16 – Deploying the COM Add-in

	Your First Microsoft Outlook COM Add-in
	Step #1 – Creating an Outlook COM Add-in Project
	Step #2 – Add-in Express COM Add-in Module
	Step #3 – Add-in Express COM Add-in Designer
	Step #4 – Adding a New Explorer Command Bar
	Step #5 – Adding a New Command Bar Button
	Step #6 – Accessing Outlook Objects
	Step #7 – Handling Outlook Events
	Step #8 – Adding a New Inspector Command Bar
	Step #9 – Customizing Main Menus in Outlook
	Step #10 – Customizing Context Menus in Outlook
	Step #11 – Handling Events of Outlook Items Object
	Step #12 – Adding Property Pages to the Folder Properties Dialogs
	Step #13 – Intercepting Keyboard Shortcuts
	Step #14 – Customizing the Outlook 2007-2010 Ribbon User Interface
	Step #15 – Adding Custom Task Panes in Outlook 2000-2010
	Step #16 – Running the COM Add-in
	Step #17 – Debugging the COM Add-in
	Step #18 – Deploying the COM Add-in

	Your First Excel RTD Server
	Step #1 – Creating a New Add-in Express RTD Server Project
	Step #2 – Add-in Express RTD Server Module
	Step #3 – Add-in Express RTD Server Designer
	Step #4 – Adding and Handling a New Topic
	Step #5 – Running the RTD Server
	Step #6 – Debugging the RTD Server
	Step #7 – Deploying the RTD Server

	Your First Smart Tag
	Step #1 – Creating a New Smart Tag Library Project
	Step #2 – Add-in Express Smart Tag Module
	Step #3 – Add-in Express Smart Tag Designer
	Step #4 – Adding a New Smart Tag
	Step #5 – Adding and Handling Smart Tag Actions
	Step #6 - Running Your Smart Tag
	Step #7 – Debugging the Smart Tag
	Step #8 – Deploying the Smart Tag

	Your First Excel Automation Add-in
	Step #1 – Creating a New COM Add-in Project
	Step #2 – Involving Excel Automation Add-in Functionality
	Step #3– Creating User-Defined Functions
	Step #4 – Running the Excel Automation Add-in
	Step #5 – Debugging the Excel Automation Add-in
	Step #6 – Deploying the Excel Automation Add-in

	Add-in Express Tips and Notes
	Terminology
	Getting Help on COM Objects, Properties and Methods
	COM Add-ins Dialog
	How to Get Access to the Add-in Host Applications
	Registry Entries
	ControlTag vs. Tag Property
	Pop-ups
	Edits and Combo Boxes and the Change Event
	Built-in Controls and Command Bars
	CommandBar.SupportedApps
	Outlook Command Bar Visibility Rules
	Removing Custom Command Bars and Controls
	My Add-in Is Always Disconnected
	Update Speed for an RTD Server
	Sequence of Events When an Office 2007 Task Pane Shows up
	Adding an Office 2007 Task Pane to an Existing Add-in Express Project
	Temporary or Not?
	Registering with User Privileges
	GDIPLUS.DLL
	Sharing Ribbon Controls Across Multiple Add-ins
	Final Note

