
High Precision

The High_Precision package provides the C++ programmer with the

ability to do high precision floating point math to any

programmer/user determined degree of precision desired, limited only

by machine capacity and time allowed for the desired calculations.

The package consists of appropriate headers and libraries for both

static and dynamic linking and presents the programmer with two

classes; HPnum which handles basic arithmetic, string conversion to

and from high precision numbers and base to base conversion of

floating point numbers. The second class, Func, provides a basic set of

math functions common to a number of scientific and engineering

needs. Statements using these functions appear straight forward as

C++ operator overrides are employed.

The trial version is restricted only in that it can be used for 30 days.

The High_Precision package contains the following modules:

High_Precision.h, High_Precision.lib, High_Precision.dll,

High_Precision_Static.h and High_Precision_Static.lib. The package

also contains this documentation.

To use the package, first decide whether you wish to use the DLL or

the static link version. Include the appropriate header file as an

include statement in the program’s header file. When linking, include

the appropriate library file in the linker command line. Place the DLL

in the environmental variable “path”.

Admonitions and limitations:

The precision is passed to the constructor of each class invocation.

The value must be consistent throughout the program. It is suggested

that the programmer define the value using the “#define” statement

and use this definition in all cases. Failure to do so will result in chaos

in the form of erroneous results to program crashes to infinite loops.

Example:

#define PR 50 // about 100 digits

…

Func F(PR);

HPnum var(PR)

By strict observance of scope and lifetime, it is possible to write

functions to which the precision is passed as a variable integer

argument. All used class instances must be defined within the

function. High precision values can be passed as arguments if they

have been converted to strings. A function can return a high precision

value if it is defined as char*, the value is returned as a converted

string and the return value is assigned to a CString.

There exists an HPnum default constructor without an argument. It is

used internally and is what allows the programmer/user to select the

desired precision. If you accidentally use it in your program, the

program will compile and link but runtime chaos will result.

Your choice of precision should employ common sense. Too small a

value and you would be better to use double variables. Too large a

value simply exponentially increases the calculation times. Memory is

allocated for each HPnum class invocation. The package has been

checked for memory leaks, they become obvious quickly in any

iterative calculation. It was also written to be thread safe. However,

judgment should be used in the allocation of HPnum classes as a

computer with limited memory can get to thrashing reading and

writing to the page file if available memory is exceeded, thus slowing

the program dramatically. The code should work in the .NET versions

of C++ if it is classed as “just because it works”.

The integer value passed in the class invocations is the number of

slots in the numerical array used for calculation. Precision (number of

places) is roughly twice this. In making your choice of precision, it is

suggested you add at least one to account for the rounding that occurs

during division. Two or three is better but adds to the calculation time.

Use your judgment.

Operation descriptions:

HPnum has the following operations where var is an HPnum:

Assignment: var = value;

 Value can be: int, unsigned int, long,

unsigned long, __int64 , unsigned __int64,

char, CString, double or HPnum.

 A floating point string may contain

exponentiation as in “e-xxx”. Do not put

spaces in the string. Exponents in constants

are also allowed within the constraints of the

compiler. Exponents in strings are

constrained by signed integer.

Comparison: int k = var1 == var2;

 k will be 1 for greater than, 0 for equal and

-1 for less than.

Addition: var1 += var2;

 var1 will contain the result. Var2 is

unmodified as in the remaining operations.

Subtraction: var1 -= var2;

Multiplication: var1 *= var2;

Division: var1 /= var2;

Power: var1 ^= var2;

Base conversion: char* = var1.BtoB(int in, int out, arg); // arg

= char* or CString.

 If arg length is zero, the value of var1 will

be taken and converted. If the length of arg

is > 0 it is used instead. This is necessary

when letters representing digits are required

for input. Max base = 46.

To convert a result to a string for output:

char* or CString = var1.String(

int, // number of decimal places to display

 // 0 will display them all.

 bool); // true = use comma’s

A character array must be of sufficient length to hold what can be a

rather long string or evil will occur. We recommend a CString. The

second argument tells the routine to insert formatting commas if true.

A leading sign will be produced if the value is negative.

The Func class contains functions which return an HPnum value.

Passed arguments are not modified. It should be noted that the

algorithms for Ln(x), Log(x) and e^x converge more slowly as x

increases. Arguments are in radians for trigonometric functions and

decimal for other functions except where noted.

The Func class contains the following functions:

// logarithms

HPnum* Ln(HPnum*); // ln(x); x>0

HPnum* Aln(HPnum*); // e^x

HPnum* Log(HPnum*); // log(x); x>0

HPnum* Alog(HPnum*); //10^x

HPnum* LntoLog(HPnum*); // ln(x)->log(x)

// power & root

HPnum* Fpower(HPnum*, HPnum*);

 // (base, power)

 // a^x=C; [returns C]

HPnum* Afpower(HPnum*, HPnum*);

 // (base, constant)

 // a^x=C; [returns x]

HPnum* Iroot(HPnum*, Int); // a^(1/Int)

// trig

HPnum* DtoR(HPnum*); // degrees to radians

HPnum* RtoD(HPnum*); // radians to degrees

HPnum *Sin(HPnum*); // sin(x)

HPnum* Cos(HPnum*); // cos(x)

HPnum* Tan(HPnum*); // tan(x)

HPnum* Arcsin(HPnum*); // arcsin(x); x^2<1

HPnum* Arccos(HPnum*); // arccos(x); x^2<1

HPnum* Arctan(HPnum*); // arctan(x); x^2!=1

// constants

HPnum* Pi(); // pi (defined in header)

HPnum* e(); // Aln(1) (defined in header)

HPnum* PHI(); // Fibonacci ratio

// misc

HPnum* Factorial(HPnum*); // x!; x=Int

Because a pointer to HPnum must be returned, the use of a function

would appear as follows:

HPnum = *Func(…);

Example:

#define PR 50

Func F(PR);

HPnum var(PR);

HPnum res(PR);

CString m_result;

…

var = “5.1234567899876543211234567890987654321”

res = *F.Log(&var);

m_result.Format("Log(x) = %s", res.String(0, false));

Note! The headers contain defined values, pi and lne10, which have

been calculated to 1000 decimal places (over 5 hours). lne10 is Ln(10)

and is used for converting from natural logs to base ten logs. pi is used

for converting degrees to radians and in the arctan (x>1), and arccos

functions. If the user requires more precision, he is advised to perform

the calculations himself.

Because of the nature of the overloaded operators for arithmetic,

writing complex equations in a single statement is difficult. You will

note that a statement such as: var1 = var2 + var2; is not legal. It is best

to break the equation down into components and perform the

calculation as a series of operations storing appropriate intermediate

HPnum values in HPnum variables. While bothersome, it will not add

noticeably to the time for the calculation.

Rick Marsh Ph.D.

Tulasi Software Systems

832 Wecoma Lp.

Florence, OR 97439

Office: 541 393 2542

rick.marsh@datanex.com

rick.marsh@oregonfast.net

Appendix:

Code examples:

#define PR 25

 Func test(PR);

 HPnum arg1(PR);

 HPnum arg2(PR);

 HPnum arg3(PR);

 HPnum res(PR);

 CString msgl;

…

 arg1 = m_string1;

 arg1 = m_string2;

 int k = arg1 == arg2;

 arg3 = arg1;

 arg3 += arg2;

 m_result = arg3.String(0, true);

 arg3 = arg1;

 arg3 -= arg2;

 m_result = arg3.String(0, true);

 arg3 = arg1;

 arg3 *= arg2;

 m_result = arg3.String(0, true);

 arg3 = arg1;

 arg3 /= arg2;

 m_result = arg3.String(0, true);

 arg3 = arg1;

 arg3 ^= arg2;

 m_result = arg3.String(0, true);

void functionA()

{

 HPnum e(PR);

 HPnum f(PR);

 HPnum g(PR);

 HPnum h(PR);

 HPnum k(PR);

 HPnum rad(PR);

 e = arg1;

 res = *test.Ln(&e);

 m_arg1.Format("Ln(x) = %s", res.String(0, false));

 res = *test.Aln(&res);

 m_arg2.Format("Aln(x) = %s", res.String(0, false));

 res = *test.Log(&e);

 m_result.Format("Log(x) = %s", res.String(0, false));

 res = *test.Alog(&res);

 m_string.Format("Alog(x) = %s", res.String(0, false));

 e = arg1;

 rad = *test.DtoR(&e);

 res = *test.Sin(&rad);

 m_arg1.Format("sin(x) = %s", res.String(0, false));

 g = res;

 g *= res;

 res = *test.Cos(&rad);

 m_arg2.Format("cos(x) = %s", res.String(0, false));

 h = res;

 h *= res;

 res = *test.Tan(&rad);

 m_result.Format("tan(x) = %s", res.String(0, false));

 g += h;

m_string.Format("(sin(x)^2) + (cos(x)^2) = s",

g.String(0, false));

 e = arg1;

 f = arg2;

 res = *test.Fpower(&e, &f);

 m_arg1.Format("a^x = C: C = %s", res.String(0,false));

 res = *test.Afpower(&e, &res);

 m_arg2.Format("a^x = C: x = %s", res.String(0, false));

 e = arg1;

 rad = *test.DtoR(&e);

 m_arg1.Format("radians = %s", rad.String(0, false));

 res = *test.Arctan(&rad);

 m_arg2.Format("arctan(x) = %s", res.String(0, false));

 res = *test.Arcsin(&rad);

 m_result.Format("arcsin(x) = %s", res.String(0, false));

 res = *test.Arccos(&rad);

 m_string.Format("arccos(x) = %s", res.String(0, false));

}

