& ‘Boss The Professional
Open Source Company

o0
JBoss Remoting Guide

JBoss Remoting version 2.5.2.SP2

January 11, 2010

Copyright © 2010 JBoss by Red Hat .

Table of Contents

O Y T SRR 1
1.1. What iSIBOSS REMOLING? ...oueieiieiiiiiie ettt ettt e s e e et e e e st e e e s e e e e e nees 1

O =] = 1

1.3. HOW tO g€t JBOSS REMOLINGuvvveiiiiieeiiiiiiiiiee e e e e e e ettt e e e e e e e s s sttt re e e e e e e e s s s easnbaa e e e e e e e s s ssnntranneeeeas 2

1.4, What'S NeW INVEISION 2.57 ... ettt e e e e e st e e e e e e s s st e e e aeeeeeaannseaneeeeens 3
1AL REEASE2.5.2.SP2 ... ettt ettt e e e e e e e nnes 3

LA2. REEASE 2.5.2 ...ttt ettt et — e e e e a e e e n e aaeeannes 3

G B B L= 1= S T R SURR 3

144 REIEASE 2.5.0.SP2 ...ttt 3

145, REEASE 2.5.0.SPLoeiiiiee ettt e e e e e e e e nae e e e e e e e e e 3

1.5, What'S NEW IN VEISION 2,47 ...ttt ettt a bt e e e st e e e e st e e e sntae e e e s nnnneeeeennes 4
15,1 REEASE 2.4.0.SP2 ...ttt ettt et e et e e e e e e e e e e eaaeennes 4

152, REEASE 2.4.0.SPL ...ttt e e e e e 4

153 REEASE 2.4.0.GA ...t a e e aa e aanes 4

P2 N o011 = ot (U = OSSPSR 5
3. JB0OSS REMOLING COMPONENESeeeeiiiiitieiee e e e e e s ettt e e e e e e e et e e e e e e e s e s bbb eeeeaaeessssnatsaeeeeaeesssansraneeeaens 9
TN B B 1 ol 0.V YT PP U PRSPPI 11

G I I =0 oo =S 11

4. Remoting libraries and thirdparty dependanCi€soccueeieiiiiiieeiiiiiee e 13
O I o 1 o I o= Y T o = == 14

S Oo 01 1To 01 = 1 o] o HT PSP PPP PP TPPP 18
5.1. General transport CONFIQUIBLTIONoiiieeeiiiieiiiei e e e e e et eennneees 18
5.1.1. Server Side CONfIQUItioNouveiiieeeiiiiiiecee e e e e e e s r e e e e e e 18

5.1.1.1. ProgrammatiC CONFIQUIATION.vvieeiiiiiieeiiireee et e e e e e e e 18

5.1.1.2. Declarative configuration: MBEANScc.ueeeeeeeiiiiiiiiiieieee et 21

5.1.1.3. Declarative configuration: POJOSceieiiiriieiiiiiieeeiiiiee s e e 22

5.1.1.4. Callback client configurationcccceeeeei e, 24

5.1.2. Client Side CONFIQUIBLIONeeiiiiiiiieeiiiiie ettt e e s e e sibe e e s snbaeeaeans 24

oI o =10 | = £ ST 25

R BT w0V = VA (= (=i (o] =) P ESSRR 29

5.4. TranSPOITS (INVOKEIS)veieeiiiiiie ettt e et e e e e e e e e e e e s snnneeeeans 31
5.4.1. Featuresintroduced in REMOLING VErSION 2.4coooiiiiiiieiiee e 31

54.1.1. BInding t0 0.0.0.0uiiiiiiiiiii e 31

5.4.1.2. MUITINOME SEIVEN'Seiiiiiiiiiiiiee ettt e e e e e e st e e e e e e e s e aeneees 31

5.4.1.3. SOCKEL Creation [ISLENENSc.uvviiiiiiee e e s et e e e r e e e e e e eeneeees 33

5.4.1.4. Making client IP address available to applicationcccceeiviiiiiiiiiniie e, 34

5.4.1.5. SUPPOrt fOr IPV6 @OrESSESvvviiiiieee ittt e e e 34

5.4.1.6. Delayed destruction of Client INVOKENSccuviieiiiiiiieiieiee e 34

5.4.2. SEIVEN INVOKENSeeiiiiiiiiie ittt e e s st e e s s nnb et e e e annbeeeesnnbaeeeaans 35

5.4.3. Configurations affecting the iNVOKer Client ... 35

5.4.4. How the server bind address and port isdeterminedccccooeee . 36

5.4.5. SOCKEL TTANSPONTeeeeiiiiieeeiiitie e ettt e ettt e e sttt e et e e e st e e e e sabb e e s e nsb e e e e e anbe e e e s anbaeeeeans 36

5.4.5.1. How the Socket tranSport WOIKSc.eeeeeiiiriieiiiiiee e 37

5.4.5.2. CONFIGUIBLIONuviiiiiiiie e et e e e e e e s e st r e e e e e e s et ar e e e e e e e e s ennneees 39

JBoss January 11, 2010

JBoss Remoting Guide

5.4.6. SSL SOCKEL traNSPON ...eiiieiiiiiiiiiee e e e e ettt e e e e e s e e e e e e e e s s et e e e e e e e s easatnrereeeaaeesaans 41
SA 7. RMITTANSPOIT ... 41
5.4.8. SSL RMI INVOKES ...ceiiiiiiee ittt ettt e e et e e s st e e e s nnna e e e e ennneeeeeansneeeeans 41
5.4.9. HTTPIFANSPOITeeiiiiiiiie ettt e e e e e st e e e e e e s s s bbb e e e e e eeeaaa 42
5.4.00. HTTPSHIIANSPON ... 43
5.4.11. HTTP(S) Client Invoker - proxy and basic authenticationccccceeeiiiiiiiiiennee e, 43
5.4.12. SEIVIEL TrANSPOIT ...cciiiiiiee ettt e e e s e e e s e e e e anrr e e e s anrneeeeans 45
X b I o]0 {0 U = 1 o o SRR 47
5.4.13. SSL SErVIEL traNSPOITceeiiieiiieiiiiiie ettt e e s e e e e e b e e e s snbaeeeeans 47
5.4.14. Exception handling for web based clientscccc 48
5.4.15. MUITIPIEX TFANSPOITveeieiiiiiiee sttt e e e e s s e e e e b e e e s enbneeeeans 49
5.4.16. SSL MUItIPIEX TraNSPONTeeeeeieeeeeee ettt ee e e e et e e e e e e s e et e e e e e e s e e snnneeeeeeaaeeeans 49
5.4.17. BiSOCKEL tFANSPOITeeeiiieeiiiiiitiee e e e e e e ettt e e e e e e e e e e e e e s e et e e e e e e e s aasatnrareeaaaeeaaaas 49
BALT.L. OVEIVIEW .., 49
BUALT.2. DEIAIS ..eveeeeiiiiiie ettt e e e e e et eeean 50
5.4.18. SSL BiSOCKEL traNSPOITevieieiiiiiie ettt e e s e e e b e e e e snbneeeeans 54
5. Marshalling ..o 54
LIS @ o=t ¢SSR 57
5.6.1. CallDACK OVEIVIBWooiiiiiii e e e e e e e e e e e e 57
5.6.1.1. CallDack CONNECLIONSccciiiiiieiiiiiie et 57
5.6.1.2. Transmitting CallDackscooiiiiiiii e 58
5.6.1.3. CallDBCK SLOTES. ...eeoiiiiiiiiiiiiie et eeean 58
5.6.1.4. Callback acknowledgementSoviiiiiiie e 60
5.6.2. Registering callback handlers. ... 61
5.6.2.1. PUIl CAllDBCKS.oeiiiiiiieee it 61
5.6.2.2. PUSO CAlIDACKS.oiiiiiiie ettt e 62
5.6.3. Unregistering callback handIerscoooiiiiiiiiiic e 65
5.6.4. Callback Store CONfIQUIALION.cuuiieiiiiiiee ettt e e e 65
5.6.5. Callback EXception HAaNAIINGccoeeieiiiiiiiieiieice et e e e 67
5.7. Socket factories and server SOCKEL fACIOMESeviviiei i 68
5.7.1. Server side programmatic configurationcccceeee e, 68
5.7.1.1. Server SOCKEL FACIOMES.cuvvieeiiiiiiee ettt e e 68
5.7.10.2. SOCKEL TACLONESeeeeeieieeeiiiete et e et e e e e e e e e e e s e e e e e e e e e e enneees 70
5.7.2. Client side programmatic ConfigUrationcccccooiiiiiiiiiiee e 71
5.7.2.1. Server SOCKEL faCtONES. ...oiiiiiiiiiiiiiee et e et e e e e e e e s 71
5.7.2.2. SOCKEL FACIOMES. ..oiiiiieieee ittt e e e s e s e e e e sntneeeeans 72
5.7.3. Server side configuration in the JBoss AppliCation SErVErcccveviiieeeeniiieee e 73
5.7.4. Client side configuration from the JBoss Application Servercccceeeeeeeeiee e, 75
5.7.5. SOCKEL Creation [ISIENEIScoiuiiiiie ittt e e e snbaeeeean 75
5.7.6. SSL traNSPOITS ...t e e e e e e 76
5.7.7. SSLSOCKEIBUIIAEY ...ttt s e e s e st e e e e snbaeeeeans 77
5.7.8. SSL ServerSOCKEtFaCtOrYSEIVICEciiiiiiiiieeiiiiiee ettt 84
5.7.9. General Security HOW TO ..ccoooeie i, 84
5.7.10. TroubI€SNOOLING TIPS ..vvveeiiiieeeeiiitiie e et ee e e st e et e st e e sbb e e s s e e e e asbe e e e s anbneeeeans 85
o3RS T T 107 0SSR 85
5.8.1. General timeout CONFIGUIBLIONceeeiiiiiiiieiie e e e e e e e e e e 86
5.8.2. Per inVOCALION tIMEOULSoiiiiiiieie e e sttt e e e st e et e e e e s e et e e e e e e e s e s sneneeeeeeaaeeeans 86
5.8.3. Trangport specific timeout handlingcvveeiiiieiiiiie e 86
5.8.3.1. Socket and biSOCKEL tranSPONScccoiirrieiiiiiiie e 86

JBoss January 11, 2010

JBoss Remoting Guide

5.8.3.2. HTTP and HTTPStranNSPOIScceeeeeeiiiiiiiiiieeeeeeeeesittreeee e e e e s seinanneeeeee e s s eanenes 87

5.8.3.3. RMI and SSLRMI tranSPOITSceeeeiiiiiieeiiiiiee et e e 87

5.8.3.4. Quick client diSCONNECEcovvveiiiiieieeeee e 88

5.9. Running With @ SeCUrity MaNAQEScoiiiiiiiie it sbaee e 88
LTV €Y= = o o R 90

5.11. Configuration DY PrOPEITIESuuuiiiiiie ittt e e e e e e e e s s e e e e e e s e st e e e e e e e s s ananraees 91
5.11.1. 0rg.jboss.remoting. NVOKErLOCEIONccoiiiiriieiiiiie e 91

5.11.2. 0rg.jboss.remoting.CHENLoeeiiiiiiiiiiiieiee e e e e e e e 92

5.11.3. 0rg.jbosS.remoting.REMOLINGvvvieiiiiiiee et 9

5.11.4. 0rg.jboss.remoting. ServerlnVOKErooooeiiiiiii 95

5.11.5. org.jboss.remoting.callback.CallbackPoller ..o 96

5.11.6. org.jboss.remoting.callback.CallbaCkStorecocuveieiiieeiiii e 97

5.11.7. org.jboss.remoting.callback.DefaultCallbackErrorHandlerccccceveeeiiiiiiiiiiinieeeen, 97

5.11.8. org.jboss.remoting.callback.ServerlnvokerCallbackHandlercccccoovviiiiiininennnnns 97

5.11.9. org.jboss.remoting.detection.jndi. INDIDELECLOrceevveeeeiiiiiiiiiiee e 98

5.11.10. org.jboss.remoting.marshal.http.HTTRPUNMarshallercocvveiiiiiiiii e 98

5.11.11. org.jboss.remoting.transport.bisocket.Bisocket ... 98

5.11.12. org.jboss.remoting.transport.http.HT TPClientinvokerccovviiiiiiii e 99

5.11.13. org.jboss.remoting.transport.http. HT TPM etadataConstantsccccccooeeicviiieeneaennnnns 99

5.11.14. org.jboss.remoting.transport.http.ss.HTTPSClientlnvokerccccccveveeeiiiiiiinnnnnn.n. 101

5.11.15. org.jboss.remoting.transport.rmi.RMIServerinVoKercccoccvvveiiiiieeenniieee e 101

5.11.16. org.jboss.remoting.transport.serviet.ServietServerlnvokerccccveveeeeeiiiiiiiineen.n. 101

5.11.17. org.jboss.remoting.transport.socket.MicroSocketClientinvokercccccoeeevvvvnennnnn. 101

5.11.18. org.jboss.remoting.transport.socket.ServerThreadc, 102

5.11.19. org.jboss.remoting.transport.socket. SocketServerlnvokercccccevvveeeiiiiciiinennnn. 102

5.11.20. org.jboss.remoting.transport.socket. SOCKEIWIapPErovvveiiiieeeiiiieee e 102

6. AAdiNg A NEW TIANSPOM ...eiieeeiiiiiiiieiee e e e e e e e e e e e e e e et e e e e e e e s s s bbb e e e eaeeessassntaaereeaeessaanrareeeeaens 103
7. SENOING SITEAMIS ...ttt et e e et e e e b et e e e s et e e e e bb et e e e e ab e e e e e e sbe e e e e annne e e e e nnree s 105
45 OCo 1 To 01 (oo IR PRSP 106

T2 ISSUBS ..o 106

oIS = 2= (o o SR 107
9. Remote classloading faCilitycccuuuiiiiiie e e e 108
9.1. Classloading iN CHENt INVOKEN'Scuuiiiiiiiiie et e s e nnneeas 108

9.2. Server side support for remote classloadingccoviiiiiiiiieiie e 109

10. Network ConneCtion MONITONTNGveeeiiiiieee ettt e s e e s e e e s snre e e e e nnnneeas 111
10.1. Client SIdE MONITOIING ... e e e e e e e s st e e e e e e e e s e anrrreneeeeas 111

10.2. Server SIde MONITOIINGceoiuvrreeeiiiieee ettt e e sttt e e st e e e e st e e e e s sbe e e s aabee e e e sasbneeeeanbneeesannneeeeans 112

10.3. Interactions between client side and server side connection MoNitoringcccceceeveenennnnnnns 114

11. Transporters - BEAMING POJOScoeiiieiiiiiiiiieee e e sttt e e e e e e et e e e e e e e s s st b e e e eaaessasnassreaeeaaaeesaans 116
12. HOW tO USE it - SAMPIE COUReiiiiiiiiii ettt e e e e e e e e e es 117
12,2, SIMPIETNVOCELION ..eveiiieiiiciiieeee et e e e e e e e e s s e e e e e e e s s s st b e e e eaaeessansbbneeeeans 117

2 I I T 1Y/ = 1 o o PRSP 118
12.3. ONEWEY INMVOCELIONuuuueiiii e aasasnnnnasnsnsnnnsnsnsnsnsnsnsnsnsnnnsnnnsnnnnnnns 121
12.4. DIiSCOVErY @0 INVOCELIONeeeiiiiiiiee et ettt e sttt e e et e et e e s sttt e e s anbn e e e e anbe e e e s annneeeean 122
12.5. CAllDACKS ...eeeeiiiiie ettt e e e e e e e et e e e e e e e nnaeeeennreeeeans 123

12.6. BiSOCKEL traANSPOI ...eeeieeeiiciiieiee et e ettt e e et e e e e e e e st e e e e e e e s s et a e e e eeaeessanntabnneeaeas 125
S 1= 1111 PP PP S PUPRPPPPUPRPN 125
12.8. IBOSS SENTAlIZBIIONvveeeeiiiiiee ettt ettt e st e e ettt e e e ettt e e e b e e e e a e e e e e nnnaeeeean 126

12,9, TIBINSPOITENSeeeeeeee e e ettt e e e et e e e e e e et e e e e e e e e s s bbb e e et e e e e e e s s nnb e s e e e e e e e e s aannbnrneeeeeas 127

JBoss January 11, 2010

JBoss Remoting Guide

12.9.1. Transporters - beaming POJOSccccuviiiiiiee et e e e srrare e e e e 127

12.9.2. Transporters Sample - SIMPIEevviiiieee e 129

12.9.3. Transporter SAMPIE - DASICuuuuui e nnnnnnnnnnnnnnes 130

12.9.4. Transporter sample - JIBOSS SEialiZaIIONeeveiiiieieiiiiiiee e 135

12.9.5. Transporter SaMpPle - CIUSLEIedoooeeiiiiieee e a e e 140

12.9.6. Transporters sSample - MUIIPIEcoiiieiiiieiiee e 146

12.9.7. TranspOrters SAMPIE = PrOXY ...cocuvreeeeriieeeeeiiie e e e e e e et e e e e s e e e s snnneee e 149

12.9.8. Transporter SaMpPle -COMPIEXoiieiiiiiiiiiei e e e e e 153

13. Client programming MOE]ooiiiiiiiiiiii e e e e e nnreeas 155
14. Compatibility and VErSIONINGccciiiiiiiii s nasannsnsnsnnnsnnnnnsnnnnnnnnns 156
15. Getting the JBossRemoting source and BUIAINGcvvviiiiiiiiiiiiie e 157
16, KINOWN ISSUBS ... eetieiie e e e e e e ettt et e e e e e e ettt et e e e e e s anstee e e e e eeeeeeannesteeeeeeeeeeaanstseeeeeaaeesaansnseeneeaaeeaans 159
L7, FULUFE PIAINS ...ttt e ettt e e e e e s sttt et e e e e e e e ea st b ba e et eeee e s s s sntsbaeeeaaessaannnbnneeeaeeesaans 160
18. REIEASE INOLESeceiiiiiiiiee ettt e e e e e e ettt et e e e e e ean et teeeeeaae e e s s sntsteeaeaeeeeaannsntennnaaaeeeans 161
18.1. Important changes and differencesin 2.5.0 release (from 2.4.0 rel€ase)ccccceveeeevvicivvnnnnnn.. 161

18.2. Important changes and differencesin 2.4.0 release (from 2.2.0 rel@ase)ccceevvveveeriiiineennns 161

18.3. Important changes and differencesin 2.2.0 release (from 2.0.0 rel€ase)cccccecvnvnvnnnnnnnnnnns 161

18.4. REIEASE NISIONYeeiiiiiiiiee ettt ettt e ettt e e s ettt e e s e e e e et e e e s nnbreeeen 162
1841 VEISION 2.5 ..eiiiiie ettt e e et e e e st e e e e st e e e e snta e e e e e nnsaeeeeannteaeeeannneeeeans 162

L1B.A.2. VEISION 2.4 ..ottt ettt ettt et e et e e e e e nbr e e e e 166

L18A.3. VEISION 2.2 ..eeeeeeeeieeee oottt ettt e e e e e e ettt e e e e e e e s e s nntateeeeaeeeeanntnraneeeaaeeaans 175

184 4. VEISION 2.0 ..eeiiiie ittt ettt e et e e e et e e e e e e e e e e e bt e e nnbe e e e e nnrreeeeans 179

L1845, VEISION L4 .ottt e e e e e et e e e e st e e e eata e e e e s nsaeaeeanaaaeeeannnaeeeans 187

L18.4.6. VEISION 1.2 ..eeiiiieeiiiie ettt e et e e e ettt e e et e e e e st e e e e ansee e e e e nnnneeeeennaeeeeennnneeeeans 192

L18.A.7. VEISION L0 ...oeeiiiiiiiiie ettt eee e e e ettt e e e e s s et e e e e e e e s e st e e e eeaeeesanntntaneeeaaeenans 194

JBoss January 11, 2010

Overview

1.1. What is JBoss Remoting?

The purpose of JBoss Remoting is to provide a single API for most network based invocations and related service
that uses pluggable transports and data marshallers. The JBossRemoting API provides the ability for making syn-
chronous and asynchronous remote calls, push and pull callbacks, and automatic discovery of remoting servers.
The intention isto allow for the use of different transports to fit different needs, yet still maintain the same API for
making the remote invocations and only requiring configuration changes, not code changes.

JBossRemoting is a standalone project, separate from the JBoss Application Server project, but will be the frame-
work used for many of the JBoss projects and components when making remote calls. JBossRemoting is included
in the recent releases of the JBoss Application Server and can be run as a service within the container as well. Ser-
vice configurations are included in the configuration section below.

1.2. Features

The features available with JBoss Remoting are:

e Server identification — a simple url based identifier which allows for remoting servers to be identified and
called upon.

» Pluggabletransports— can use different protocol transports the same remoting API.

Provided transports:

e Socket (SSL Socket)

« RMI (SSL RMI)

« HTTP(S

e Servlet (SSL Servlet)

« Bisocket (SSL Bisocket)

¢ Pluggable data marshallers — can use different data marshallers and unmarshallers to convert the invocation
payloads into desired data format for wire transfer.

¢ Pluggable serialization - can use different serialization implementations for data streams.

JBoss January 11, 2010 1

Overview

Provided serialization implementations:

» Javaseridization
* JBoss seridization
» Automatic discovery — can detect remoting servers as they come on and off line.

Provided detection implementations:

e Multicast
« JNDI

e Server grouping — ability to group servers by logical domains, so only communicate with servers within spe-
cified domains.

» Callbacks— can receive server callbacks via push and pull models. Pull model allows for persistent stores and
memory management.

» Asynchronous calls — can make asynchronous, or one way, callsto server.

* Local invocation —if making an invocation on a remoting server that is within the same process space, remot-
ing will automatically make this call by reference, to improve performance.

* Remote classloading — alows for classes, such as custom marshallers, that do not exist within client to be
loaded from server.

¢ Sending of streams — allows for clients to send input streams to server, which can be read on demand on the
server.

e Clustering - seamless client failover for remote invocations.
e Connection failure notification - notification if client or server has failed
e Data Compression - can use compression marshaller and unmarshaller for compresssion of large payloads.

All the features within JBoss Remoting were created with ease of use and extensibility in mind. If you have a sug-
gestion for a new feature or an improvement to a current feature, please log in our issue tracking system at ht-
tp:/ljirajboss.com

1.3. How to get JBoss Remoting

The JBossRemoting distribution can be downloaded from http://www.jboss.org/jbossremoting/
[http://mww.jboss.org/jbossremoting/] . This distribution contains everything needed to run JBossRemoting stand
alone. The distribution includes binaries, source, documentation, javadoc, and sample code.

JBoss January 11, 2010 2

http://jira.jboss.com
http://jira.jboss.com
http://www.jboss.org/jbossremoting/

Overview

1.4. What's new in version 2.5?

Version 2.5.0 represents the process of upgrading the jars with which Remoting is tested and shipped. In particular,
the jars are now equivalent to the jars found in the JBoss Application Server version 5.0.0.CR2 (as of 9/6/08, before
its release). Changes to jbossweb (the JBoss version of Tomcat) have necessitated dropping the use of Apache
Tomcat, which means that the "http" transport will no longer function with jdk 1.4.

Other features of Remoting 2.5.0.GA should function with jdk 1.4. However, it is the policy of JBoss, adivision of
Red Hat, no longer to support jdk 1.4.

1.4.1. Release 2.5.2.SP2
* Multiple bug fixes.

1.4.2. Release 2.5.2

Introduction of "connection identity" concept

Introduction of write timeout facility;

» improved reliability for callbacks in bisocket transport;

e improved treatment of invocation retries in socket and bisocket transports;

« Moreflexible configuration (see, for example, or g. j boss. renot i ng. Renot i ng. CONFI G_OVERRI DES_LOCATOR)
* Added immediate shutdown option for socket transport

* Multiple bug fixes.

1.4.3. Release 2.5.1

e Security fix (JBREM-1116 "Remove SecurityUTtility")
e Moreflexible configuration (seeor g. j boss. renoti ng. d i ent . USE_ALL_PARAMS)
e Jarsupdated to conform to Application Server 5.1.0.CR1

* Multiple bug fixes.

1.4.4. Release 2.5.0.SP2

* A few bugfixes.

1.4.5. Release 2.5.0.SP1

JBoss January 11, 2010 3

Overview

e Thedistribution zip file no longer contains previous versions of jboss-remoting.jar.

e A few bug fixes.

1.5. What's new in version 2.4?

1.5.1. Release 2.4.0.SP2

* Coyot el nvoker addsthe URL query to thel nvocat i onRequest request map.

e Aleak in Java serialization output marshalling has been fixed.

1.5.2. Release 2.4.0.SP1

» Theremote classloading facility can be configured with lists of classloaders.
e Classloading in the client can optionally start with the thread context classl oader.

e Leasing can be enabled declaratively.

1.5.3. Release 2.4.0.GA

JBossRemoting 2.4.0.GA is an incremental release, with dozens of bug fixes and several new features:

e serverscan be bound to multiple IP addresses
e canrun in the presence of a security manager
e greater configurability

e supports IPv6 addresses

e improved connection monitoring

e server getsclient addressin invocations

JBoss January 11, 2010

Architecture

The most critical component of the JBoss Remoting architecture is how servers are identified. This is done via an
InvokerLocator, which can be represented by a simple String with a URL based format (e.g., sock-
et://myhost:5400). Thisis all that is required to either create a remoting server or to make a call on aremoting serv-
er. The remoting framework will then take the information embedded within the InvokerL ocator and construct the
underlying remoting components needed and build the full stack required for either making or receiving remote in-
vocations.

There are severa layersto this framework that mirror each other on the client and server side. The outermost layer
is the one which the user interacts with. On the client side, thisis the Client class upon which the user will make its
calls. On the server side, thisis the InvocationHandler, which isimplemented by the user and is the ultimate receiv-
er of invocation requests. Next is the transport, which is controlled by the invoker layer. Finally, at the lowest layer
isthe marshalling, which converts data type to wire format.

Remoting Client Remoting Server
— Marshaller —~—. | UnMarshaller |—
. Output Inpot :
Stream Stream
p Client ! \ / E Server
E] : Invocation
-~ Client —— Invoker (m» oo o o e sssockcimee e o e ese e Invoker 1 Handler
b (transport) E / | (transport)
Input Output
. Stream Stream |
— UnMarshaller |-=t—— o Marshaller |—]

When a user calls on the Client to make an invocation, it will pass this invocation request to the appropriate client
invoker, based on the transport specified by the locator url. The client invoker will then use the marshaller to con-
vert the invocation request object to the proper data format to send over the network. On the server side, an unmar-
shaller will receive this data from the network and convert it back into a standard invocation request object and
send it on to the server invoker. The server invoker will then pass this invocation request on to the user’s imple-
mentation of the invocation handler. The response from the invocation handler will pass back through the server in-
voker and on to the marshaller, which will then convert the invocation response object to the proper data format
and send back to the client. The unmarshaller on the client will convert the invocation response from wire data
format into standard invocation response object, which will be passed back up through the client invoker and Client
tothe original caller.

Client

On the client side, there are a few utility class that help in figuring out which client invoker and marshal instances
should be used.

JBoss January 11, 2010 5

Architecture

Remoting Client

Invoker Marshal
:_+ Registry I-* Factory
- |
I rP———
1 1
Marshaller -
© Dutput
: Stream
: Client Y
| Client invoker e o e o e ssssockei
: (transport) : ‘,u"
' It
© Stream
UnMarshaller |-—-

For determining which client invoker to use, the Client will pass the InvokerRegistry the locator for the target serv-
er it wishes to make invocations on. The InvokerRegistry will return the appropriate client invoker instance based
on information contained within the locator, such as transport type. The client invoker will then call upon the Mar-
shal Factory to get the appropriate Marshaller and UnMarshaller for converting the invocation objects to the proper
data format for wire transfer. All invokers have a default data type that can be used to get the proper marshal in-
stances, but can be overridden within the locator specified.

Server

On the server side, there are also a few utility classes for determining the appropriate server invoker and marshal
instances that should be used. There is al'so a server specific class for tying the invocation handler to the server in-
voker.

JBoss January 11, 2010 6

Architecture

Remoting Server

Marshal Invoker
Factory Registry

A A

Ll e i |

1
Connector

;—-—I- UnMarshaller

Input
Stream -
/ 3 Server
amm:ockeinns o oo o o ey Invoker l“:::::;?“
\ : (transport)
Culput -
Stream -

“—— Marshaller

On the server side, it isthe Connector class that is used as the external point for configuration and control of the re-
moting server. The Connector class will cal on the InvokerRegistry with its locator to create a server invoker.
Once the server invoker is returned, the Connector will then register the invocation handlers on it. The server in-
voker will use the Marshal Factory to obtain the proper marshal instances as is done on the client side.

Detection

To add automatic detection, a remoting Detector will need to be added on both the client and the server side as well
as a NetworkRegistry to the client side.

JBoss January 11, 2010 7

Architecture

.

Remoting Server
Remoting Chent Invoker
Datector Registry
Network
Reglstry - Detector m | e
______________ | Connector
— Marshaller \ / #| UnMarshaller —
Dutpul Inpul
Stream Strnam
Client 3 / Sl Invocation
Client ——— Invoker I N IS S S EEESOCkeE T S S S Invoker - Handler
{transport) / [(transport)
Iput n"..l_.:l
Slraam Siraam
— UnMarshaller J . Marshaller [—

When a Detector on the server side is created and started, it will periodically pull from the InvokerRegistry all the
server invokers that it has created. The detector will then use the information to publish a detection message con-
taining the locator and subsystems supported by each server invoker. The publishing of this detection message will
be either via a multicast broadcast or a binding into a INDI server. On the client side, the Detector will either re-
ceive the multicast broadcast message or poll the JINDI server for detection messages. If the Detector determines a
detection message is for a remoting server that just came online it will register it in the NetworkRegistry. The Net-
workRegistry houses the detection information for all the discovered remoting servers. The NetworkRegistry will
aso emit a IMX notification upon any change to this registry of remoting servers. The change to the NetworkRe-
gistry can also be for when a Detector has discovered that a remoting server is no longer available and removes it
from the registry.

JBoss January 11, 2010

JBoss Remoting Components

This section covers afew of the main components exposed within the Remoting API with a brief overview.

org.jboss.remoting.Client —is the class the user will create and call on from the client side. Thisis the main entry
point for making all invocations and adding a callback listener. The Client class requires only the InvokerL ocator
for the server you wish to call upon and that you call connect before use and disconnect after use (which is technic-
aly only required for stateful transports and when client leasing is turned on, but good to call in either case).

org.jboss.remoting.l nvokerL ocator — is a class, which can be described as a string URI, for identifying a particu-
lar JBossRemoting server JVM and transport protocol. For example, the InvokerLocator string sock-
€t://192.168.10.1:8080 describes a TCP/IP Socket-based transport, which is listening on port 8080 of the IP ad-
dress, 192.168.10.1. Using the string URI, or the InvokerL ocator object, JBossRemoting can make a client connec-
tion to the remote server. The format of the locator string is the same as the URI type
[transport]://[host]: <port>/path/ ?<par anet er =val ue>&<par anet er =val ue>

A few important points to note about the InvokerLocator. The string representation used to construct the Invoker-
Locator may be modified after creation. This can occur if the host supplied is 0.0.0.0, in which case the Invoker-
Locator will attempt to replace it with the value of the local host name. This can also occur if the port specified is
less than zero or not specified at al (in which case remoting will select arandom port to use).

The InvokerLocator will accept host name as is and will not automatically convert to IP address (since 2.0.0 re-
lease). There are two comparison operators for InvocatorLocators, equal s() and i sSaneEndpoi nt (), and neither
resolve a hostname to |P address or vice versa. equal s() compares all components of the InvokerL ocator, charac-
ter by character, whilei sSaneEndpoi nt () usesonly protocol, host, and port. The following examples are just some
of the comparisonsthat can be seeninorg. j boss. test.remoting. | ocat or. | nvoker Locat or Test Case:

new | nvoker Locator("http://| ocal host: 1234/ servi ces/ uri: Test"). equal s(
new | nvoker Locator ("http://1 ocal host: 1234")) returnsf al se

new | nvoker Locator("http://I ocal host: 1234/ servi ces/ uri: Test"). equal s(
new | nvoker Locator ("http://127.0.0. 1: 1234")) returnsf al se

new | nvoker Locator ("http://l ocal host: 1234/ servi ces/uri: Test").isSameEndpoi nt (
new | nvokerLocator ("http://|ocal host:1234")) returnstrue

new | nvoker Locator ("http://l ocal host: 1234/ servi ces/uri: Test").isSameEndpoi nt (
new | nvoker Locator ("http://127.0.0. 1: 1234")) returnsf al se

N.B. As of version 2.4, | nvoker Locat or Uses the classj ava. net . URI, rather than its original ad hoc parsing code,
to parse the String passed to its constructor. If, for some reason, the new algorithm causes problems for legacy

JBoss January 11, 2010 9

JBoss Remoting Components

code, it is possible to configure | nvoker Locat or to use the original parsing code by calling the static method
org.j boss. renoting. | nvoker Locat or. set UseLegacyPar si ng() .

org.jboss.remoting.transport.Connector - is an MBean that loads a particular Serverlnvoker implementation for
a given transport subsystem and one or more ServerlnvocationHandler implementations that handle Subsystem in-
vocations on the remote server VM. The Connector is the main user touch point for configuring and managing a
remoting server.

org.jboss.remoting.ServerInvocationHandler —is the interface that the remote server will call on with an invoca-
tion received from the client. This interface must be implemented by the user. This implementation will also be re-
quired to keep track of callback listeners that have been registered by the client as well.

org.jboss.remoting.I nvocationRequest — is the actual remoting payload of an invocation. This class wraps the
caller’ s request and provides extra information about the invocation, such as the caller’s session id and its callback
locator (if one exists). Thiswill be object passed to the ServerlnvocationHandler.

org.jboss.remoting.stream.Streaml nvocationHandler — extends the ServerlnvocationHandler interface and
should be implemented if expecting to receive invocations containing an input stream.

org.jboss.remoting.callback.lnvoker CallbackHandler — the interface for any callback listener to implement.
Upon receiving callbacks, the remoting client will call on thisinterfaceif registered as alistener.

org.jboss.remoting.callback.Callback — the callback object passed to the InvokerCallbackHandler. It contains the
callback payload supplied by the invocation handler, any handle object specified when callback listener was re-
gistered, and the locator from which the callback came.

org.jboss.remoting.networ k.Networ kRegistry — this is a singleton class that will keep track of remoting servers
as new ones are detected and dead ones are detected. Upon a change in the registry, the NetworkRegistry fires a
NetworkNotification.

org.jboss.remoting.networ k.Networ kNotification —a JMX Notification containing information about a remoting
server change on the network. The notification contains information in regards to the server’'s identity and all its
locators.

org.jboss.remoting.detection.Detection — is the detection message fired by the Detectors. Contains the locator and
subsystems for the server invokers of aremoting server as well as the remoting server’s identity.

org.jboss.remoting.ident.l dentity —is one of the main components remoting uses during discovery to identify re-
moting server instances (is actually the way it guarantees uniqueness). If have two remoting servers running on the
same server, they can be uniquely identified. The reason the identity is persisted (currently only able to do this to
the file system) is so if a server crashes and then restarts, can identify it when it restarts as the one that crashed
(instead of being a completely new instance that is being started). This may be important from a monitoring point
as would want to know that the crashed server is back online.

When creating the identity to be presisted, remoting will first look to see if a system property for 'jboss.identity’ has
been set dready. If it has, will use that one. If not, will get the value for the 'ServerDataDir' attribute of the
'|boss.system:type=ServerConfig' mbean. If can retrieve this value, will use this as the directory to write out the
'iboss.identity’ file. If not, will look to seeif a system property has been set for ‘jboss.identity.dir'. If it has, will use
this as the directory to write the 'jboss.identity’ file to, otherwise, will default to .. If for some reason the file can
not be written to, will throw a RuntimeException, which will cause the detector to error during startup. For more
details on how and where the identity is persisted, can refer to org.jboss.remoting.ident.Identity.createl d().

JBoss January 11, 2010 10

JBoss Remoting Components

org.jboss.remoting.detection.multicast.M ulticastDetector — is the detector implementation that broadcasts its
Detection message to other detectors using multicast.

org.jboss.remoting.detection.jndi.JNDIDetector — is the detector implementation that registers its Detection
message to other detectors in a specified JINDI server.

There are afew other components that are not represented as a class, but important to understand.

Subsystem — a sub-system is an identifier for what higher level system an invocation handler is associated with.
The sub-system is declared as any String value. The reason for identifying sub-systems is that a remoting Connect-
or’s server invoker may handle invocations for multiple invocation handlers, which need to be routed based on sub-
system. For example, a particular socket based server invoker may handle invocations for both customer processing
and order processing. The client making the invocation would then need to identify the intended sub-system to
handle the invocation based on this identifier. If only one handler is added to a Connector, the client does not need
to specify a sub-system when making an invocation.

Domain — alogical name for a group to which a remoting server can belong. The detectors can discriminate as to
which detection messages they are interested based on their specified domain. The domain to which a remoting
server belongs is stored within the Identity of that remoting server, which is included within the detection mes-
sages. Detectors can be configured to accept detection messages from one, many or all domains.

3.1. Discovery

One of the features of JBoss Remoting isto be able to dynamically discover remoting servers. Thisis done through
the use of what remoting calls detectors. These detectors run in same instance as the servers and the clients. The de-
tectors that run within the server instance automatically gets list of remoting servers running locally and emits a de-
tection message contain information about those servers, such as their locator url and subsystems supported. The
detector running within the client instance will receive these detection messages and update alocal registry, called
the network registry, with this information. The client detector will also monitor the remoting servers it has dis-
covered in case one were to fail, in which case, will notify the network registry of the failure The network registry
will then fire events to registered listeners (via IMX notifications), to include events such as new server added or
server failure.

There are currently two types of detector implementations; multicast and JNDI. The multicast detectors use multic-
ast channel to send and receive detection messages. The JNDI detectors use a well known JNDI server to bind and
lookup detection messages.

The standard approach for detecting remoting servers happens in a passive manner, in that as detection messages
are received by the client detector, they will cause an event to fire. In some cases, will need ability to synchron-
ously discover the remoting servers that exist upon startup. This can be done by calling the forceDetection() meth-
od on the detector. This will return an array of Networklnstances which contains the server information. Note, this
method can take a few seconds to return (at least in multicast implementation).

3.2. Transports

Service provider interface

JBoss January 11, 2010 11

JBoss Remoting Components

The transport implementations within remoting, caled invokers, are responsible for handling the wire protocol to
be used by remoting clients and servers. Remoting will load client and server invoker (transport) implementations
(within the InvokerRegistry) using factories. The factory class to be loaded will always be either TransportClient-
Factory (for loading client invoker) or TransportServerFactory (for loading server invoker). These classes must im-
plement org.jboss.remoting.transport.dientFactory and org.jboss.renpting.transport. ServerFactory
interfaces respectively. The package under which the TransportClientFactory and TransportServerFactory will al-
ways start with or g. j boss. test. renoting. transport, then the transport protocol type. For example, the 'socket’
transport factories are org.jboss.remoting.transport.socket. TransportC ient Factory and
org.jboss.renoting.transport.socket. Transport Server Factory. The API for
org.jboss.remoting.transport.ClientFactory is:

public Cientlnvoker createdientlnvoker(lnvokerLocator |ocator, Map config) throws | OException;
publ i c bool ean supportsSSL();

The API for org.jboss.remoting.transport.ServerFactory is.

publ i c Serverlnvoker createServerlnvoker(lnvokerLocator |ocator, Map config) throws | CException;
publ i ¢ bool ean supportsSSL();

An example of a transport client factory for the socket transport
(org.jboss.renoting. transport.socket. Transportd i ent Factory) is:

public class TransportdientFactory inplenents CientFactory

{
public dientlnvoker createdientlnvoker(lnvokerLocator |ocator, Mp config)
t hrows | OException
{
return new Socket d i entlnvoker (Il ocator, config);
}
publ i ¢ bool ean supportsSSL()
{
return false;
}
}

The packages used within the factory does not matter as long as they are on the classpath. Note that the transport
factories are only loaded upon request for that protocol. Also, the client and server factories have been separated so
that only the one requested is loaded (and thus the corresponding classes needed for that invoker implementation).
So if only ask for a particular client transport invoker, only those classes are loaded and the ones needed for the
server are not required to be on the classpath.

The biggest reason for taking this approach is allows users ability to plugin custom transport implementation with
zero config. Remoting comes with the following transports: socket, ssisocket, bisocket, sslbisocket, http, https,
multiplex, sssmultiplex, servlet, sslserviet, rmi, ssrmi.

JBoss January 11, 2010 12

Remoting libraries and thirdparty dependancies

Remoting partitions its functionality into severa different libraries to allow the size of the footprint to be controlled
according to the features that will be used. Remoting distribution will include the following remoting binaries
(found in the lib directory of the distribution).

jboss-remoting.jar - this binary contains all the remoting classes. This is the only remoting jar that is needed to
perform any remoting function within JBoss Remoting. Of course, third party jars will be required.

Since some may want to better control size of the binary footprint needed to use remoting, the remoting classes
have been broken out into multiple remoting binaries based on their function. There are four categories of these
binaries; core, detection, transport, and other.

core

jboss-remoting-corejar - contains al the core remoting classes needed for remoting to function. If not using
jboss-remoting.jar, then jboss-remoting.core.jar will be required.

detection

jboss-remoting-detection - contains all the remoting classes needed to perform automatic discovery of remoting
servers. It includes both the jndi and multicast detector classes aswell as the network registry classes.

transport

jboss-remoting-socket.jar - contains all the classes needed for the socket and sslsocket transports to function as
both a client and a server.

jboss-remoting-socket-client.jar - contains al the classes needed for the socket and sslsocket transports to func-
tion asaclient only. This means will not be able to perform any push callbacks or sending of streams using thisjar.

jboss-remoting-http.jar - contains all the classes needed for the http and https transports to function as a client and
aserver.

jboss-remoting-http-client.jar - contains all the classes needed for the http, https, servlet, and sslservlet transports
to function as a client only. This means will not be able to perform any push callbacks or sending of streams using
thisjar.

jboss-remoting-servlet.jar - contains al the classes needed for the servlet or sslservlet transports to function as a
server only (also requires servlet-invoker.war be deployed within web container as well).

jboss-remoting-rmi.jar - contains al the classes needed for the rmi and ssrmi transports to function as a client

JBoss January 11, 2010 13

Remoting libraries and thirdparty dependancies

and aserver.

jboss-remoting-bisocket.jar - contains all the classes needed for the bisocket and sslbisocket transports to function
as both aclient and a server.

jboss-remoting-bisocket-client.jar - contains all the classes needed for the bisocket and sslbisocket transports to
function as a client only. This means will not be able to perform any push callbacks or sending of streams using
thisjar.

other

jboss-remoting-serialization.jar - contains just the remoting serialization classes (and seriaization manager im-
plementations for java and jboss).

jboss-remoting-samples,jar - al the remoting samples showing example code for different remotng functions.

4.1. Third party libraries

This section covers which thirdparty jars are required based on the feature or transport to be used. Remember, any
jboss-remoting-XXX_.jar can be replaced with just the jboss-remoting.jar.

Table 1 gives the direct dependencies of the Remating jars on third party jars (and jboss-remating-core.jar, in most
cases). Table 2 gives the transitive closure of Table 1.

Theinformation in Tables 1 and 2 was derived with the use of the extremely useful Tattletale tool, available on the
jboss.org website: http://www.jboss.org/tattletal e [http://www.jboss.org/tattl etal €]

Table4.1. Jar dependencies.

jar dependson

jboss-remoting-bisocket-client.jar: concurrent.jar, jboss-common-core.jar, jboss-log-
ging-spi.jar, jboss-remoting-core.jar, jboss-
serialization.jar

jboss-remoting-bisocket.jar: concurrent.jar, jboss-common-core.jar, jboss-log-
ging-spi.jar, jboss-remoting-core.jar, jboss-
seridization.jar

jboss-remoting-core.jar: concurrent.jar, jboss-common-core.jar, jboss-j2se,jar,
jboss-logging-spi.jar, jboss-remoting-detection.jar,
jboss-serialization.jar, log4j.jar

jboss-remoting-detection.jar: jboss-j2se.jar, jboss-logging-spi.jar, jboss-remot-
ing-core.jar, jnpserver.jar, log4j.jar

JBoss January 11, 2010 14

http://www.jboss.org/tattletale

Remoting libraries and thirdparty dependancies

jar

jboss-remoting-http-client.jar:

jboss-remoting-http.jar:

jboss-remoting-rmi.jar:

dependson

jboss-common-core.jar, jboss-logging-spi.jar, jboss-
remoting-core.jar

jboss-common-core.jar, jboss-logging-spi.jar, jboss-
remoting-core.jar, jbossweb.jar

jboss-common-core.jar, jboss-logging-spi.jar, jboss-
remoting-core.jar, jboss-serialization.jar

jboss-remoting-samples,jar:

jboss-common-core.jar, jboss-logging-log4j jar,
jboss-logging-spi.jar, jboss-remot-
ing-bisocket-client.jar, jboss-remoting-core.jar, jboss-
remoting-detection.jar, jboss-remoting.jar, jnpserv-
er.jar, junit.jar, logdj.jar, servlet-api.jar

jboss-remoting-serialization.jar:

jboss-remoting-servlet.jar:

jboss-remoting-socket-client.jar:

jboss-remoting-socket.jar:

jboss-remoting.jar:

Table 4.2. Transitive closure of jar dependencies.

jar

jboss-logging-spi.jar, jboss-remoting-core.jar, jboss-
serialization.jar

jboss-logging-spi.jar, jboss-remoting-core.jar, servlet-
api.jar

concurrent.jar, jboss-common-core.jar, jboss-log-
ging-spi.jar, jboss-remoting-core.jar

concurrent.jar, jboss-common-core.jar, jboss-log-
ging-spi.jar, jboss-remoting-core.jar, jboss-
serialization.jar

concurrent.jar, jboss-common-core.jar, jboss-j2se;jar,
jboss-logging-logdj.jar, jboss-logging-spi.jar, jboss-
serialization.jar, jbossweb.jar, jnpserver jar, junit.jar,
logdj.jar, servlet-api.jar

dependson

jboss-remoting-bisocket-client.jar:

concurrent.jar, jboss-common-core.jar, jboss-j2se jar,
jboss-logging-spi.jar, jboss-remoting-core,jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
[[npserver.jar], logdj.jar, trovejar

JBoss January 11, 2010

15

Remoting libraries and thirdparty dependancies

jar

jboss-remoting-bisocket.jar:

jboss-remoting-core.jar:

jboss-remoting-detection.jar:

jboss-remoting-http-client.jar:

jboss-remoting-http.jar:

jboss-remoting-rmi.jar:

jboss-remoting-samples.jar:

jboss-remoting-serialization.jar:

jboss-remoting-servlet.jar:

dependson

concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-spi.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-seriaization.jar,
[inpserver.jar], logdj.jar, trovejar

concurrent.jar, jboss-common-core.jar, jboss-j2se jar,
jboss-logging-spi.jar, [jboss-remoting-detection.jar],
jboss-seriaization.jar, [jnpserver.jar], logdj.jar,
trovejar

concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-spi.jar, jboss-remoting-core.jar, jboss-
seridization.jar, jnpserver.jar, log4j.jar, trovejar

concurrent.jar, jboss-common-core.jar, jboss-j2se,jar,
jboss-logging-spi.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
[inpserver.jar], logdj.jar, trove.jar

concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-spi.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
jbossweb.jar, [jnpserver.jar], logdj.jar, servlet-api.jar,
trovejar

concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-spi.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
[inpserver.jar], logdj.jar, trovejar

concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-logdj.jar, jboss-logging-spi.jar, jboss-
remoting-bisocket-client.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
[jnpserver.jar], junit.jar, logdj.jar, servlet-api.jar,
trovejar

concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-spi.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
[inpserver.jar], logdj.jar, trovejar

concurrent.jar, jboss-common-core,jar, jboss-j2sejar,

JBoss January 11, 2010

16

Remoting libraries and thirdparty dependancies

jar dependson

jboss-logging-spi.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
[inpserver.jar], log4j .jar, servlet-api.jar, trovejar

jboss-remoting-socket-client.jar: concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-spi.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
[inpserver.jar], logdj.jar, trovejar

jboss-remoting-socket.jar: concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-spi.jar, jboss-remoting-core.jar,
[jboss-remoting-detection.jar], jboss-serialization.jar,
[inpserver.jar], logdj.jar, trovejar

jboss-remoting.jar: concurrent.jar, jboss-common-core,jar, jboss-j2sejar,
jboss-logging-logdj.jar, jboss-logging-spi.jar, jboss-
serialization.jar, jbossweb.jar, jnpserver jar, junit.jar,
logdj.jar, servlet-api.jar, trovejar

Notes.

1. jboss-remoting-core contains the transporter classes, and some of those need jboss-remoting-detection.jar, which
explains the proliferation of jboss-remoting-detection.jar in Table 2. If transporters are not used, then jboss-re-
moting-detection.jar can be omitted. Moreover, INDI detection requires jnpserver.jar, so that, if transporters are not
used, jnpserver.jar can be omitted.

JBoss January 11, 2010 17

Configuration

This covers the configuration for JBoss Remoting discovery, connectors, marshallers, and transports. All the con-
figuration properties specified can be set either via calls to the object itself, including via IMX (so can be done via
the IMX or Web console), via a JBoss AS service xml file. Examples of service xml configurations can be seen
with each of the sections below. There is also an example-service.xml file included in the remoting distribution that
shows full examples of al the remoting configurations. In the presence of the JBoss Microcontainer, Remoting
servers may be configured by the injection of an org. j boss. remoti ng. Server Confi gurati on object specified in
an *-beans.xml file.

5.1. General transport configuration

Remoting offers a variety of ways of configuring transports on the server side and client side. This section presents
an overview, and the rest of the chapter elaborates the material presented here. For easy reference the configuration
parameters discussed throughout the chapter are gathered together at the end of the chapter in section Configuration
by properties

5.1.1. Server side configuration

The heart of the server side is the Connect or, and it is through the Connect or that the server side of atransport is
configured. The central goals of configuration on the server side are to establish a server invoker and supply it with
a set of invocation handlers. Only one invoker can be declared per Connect or . Although declaring an invocation
handler is not required, it should only be omitted in the case of declaring a callback server that will not receive dir-
ect invocations, but only callback messages. Otherwise client invocations can not be processed. The invocation
handler is the only interface that is required by the remoting framework for a user to implement and will be what
the remoting framework calls upon when receiving invocations.

There are two general approaches to server side configuration: programmatic and declarative. A variety of pro-
grammatic technigues work in any environment, including the JBoss Application Server (JBossAS). Moreover,
JB0ssAS adds the option of declarative configuration. In particular, the SARDeployer (see The JBoss 4 Application
Server Guide on the labs.jboss.org web site) can read information from a *-service.xml file and use it to configure
MBeans such as Connect or S.

5.1.1.1. Programmatic configuration.

The simplest way to configure a Connect or iSt0 pass an | nvoker Locat or t0 @Connect or constructor. For example,
the code fragment

String |l ocatorURI = "socket://test.sonedonai n.com 8084";
String parans = "/?clientlLeasePeri od=10000&t i meout =120000";
| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator(locatorURl);

JBoss January 11, 2010 18

Configuration

Connect or connector = new Connector (Il ocator);

connector.create();

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocat i onHandl er () ;
connect or . addl nvocat i onHandl er ("sanpl e", invocationHandl er);
connector.start();

creates a server invoker based on the socket transport, directs it to listen for invocations on port 8084 of host
test.somedomain.com, and passes two configuration parameters, "clientL easePeriod" and "timeout”. It also supplies
the server invoker with an invocation handler.

One limitation of the I nvoker Locat or isthat it can only represent string values. An alternative that overcomes this
limitation is to pass some or all of the parameters to the Connect or by way of a configuration map. The following
code fragment accomplishes al that the previous fragment does, but it passes one parameter by way of the I n-
voker Locat or and passes the other by way of a configuration map. It also passes in a non-string object, a Ser ver -
Socket Fact ory.

String |l ocatorURI = "socket://test.sonedonai n.com 8084";

String parans = "/?clientLeasePeri 0d=10000";

| ocat or URI += par ans;

I nvoker Locat or | ocator = new | nvokerLocator(locatorURl);

HashMap config = new HashMap();

confi g. put (Serverl nvoker. TI MEQUT, "120000");

confi g. put (Serverl nvoker. SERVER_SOCKET_FACTORY, new MyServer Socket Factory());
Connect or connector = new Connector (|l ocator, config);

connector.create();

Sanpl el nvocat i onHandl er invocati onHandl er = new Sanpl el nvocati onHandl er () ;
connect or . addl nvocat i onHandl er ("sanpl e", invocationHandl er);
connector.start();

Note that the value of Serverlinvoker.TIMEQUT is “"timeout’, and the value of Serverin-
voker . SERVER_SOCKET_FACTCRY is "serverSocketFactory". These configuration map keys are discussed throughout
the chapter and accumulated in section Configuration by properties. Also, server socket factory configuration is
covered in Socket factories and server socket factories.

A third programmatic option is available for those configuration properties which happen to be server invoker
MBean properties. In the following fragment, the server invoker is obtained from the Connect or and a Ser ver -
Socket Fact ory ispassed to it by way of a setter method:

String |locatorURI = "socket://test.sonedomai n.com 8084";
String parans = "/?clientlLeasePeri 0d=10000";

| ocat or URI += par ars;

I nvoker Locat or | ocator = new | nvokerLocator (Il ocatorURI);
HashMap config = new HashMap();

confi g. put (Serverl nvoker. TI MEQUT, "120000");

Connector connector = new Connector(locator, config);
connector.create();

Server | nvoker serverlnvoker = connector. get Serverl nvoker();
Server Socket Factory ssf = new MyServer Socket Factory();
server | nvoker. set Ser ver Socket Fact ory(ssf);

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocati onHandl er () ;
connect or. addl nvocat i onHandl er ("sanpl e", invocati onHandl er);
connector.start();

Note. The Connect or creates the server invoker during the call to Connect or. creat e(), So this option only works
after that method has been called. Also, depending on the parameter and the transport, this option may or may not
be effective after the call to Connector. start (), which callsstart () onthe server invoker.

JBoss January 11, 2010 19

Configuration

A fourth option, which exists primarily to support the declarative mode of configuration presented below, isto pass
an XML document to the Connect or . The following fragment duplicates the behavior of the first and second ex-
amples above.

HashMap config = new HashMap();
confi g. put (Serverl nvoker. TI MEQUT, "120000");
Connect or connector = new Connector(config);

/1 Set xm configuration el enent.
StringBuffer buf = new StringBuffer();
buf . append(" <?xm version=\"1.0\"?>\n");
buf . append(" <confi g>");

buf . append(" <i nvoker transport=\"socket\">");

buf . append(" <attri bute name=\"server Bi ndAddr ess\ " >t est . somedomai n. conx/ attri bute>");
buf . append(" <attribute name=\"serverBi ndPort\">8084</attri bute>");

buf . append(" <attribute name=\"clientLeasePeriod\">10000</attribute>");

buf . append(” </i nvoker>");

buf . append(" <handl ers>");

buf . append(" <handl er subsystenmr\ "nmock\">");

buf . append(" org.j boss.renoting.transport. nock. Sanpl el nvocat i onHandl er");

buf . append(" </ handl er>");

buf . append(" </ handl ers>");
buf . append(" </ config>");

Byt eArrayl nput St ream bai s = new Byt eArrayl nput Stream(buf.toString().getBytes());
Docunent xm = Docunent Bui | der Fact ory. new nst ance() . newbDocunent Bui | der (). par se(bai s);
connect or . set Confi gurati on(xmnl . get Docurment El emrent ()) ;

connector.create();
connector.start();

Note that there is no I nvoker Locat or in this example. If the Connect or gets an I nvoker Locat or, it ignores the
presence of the xml document. Note also that this method only supports the use of string values, so it is necessary
to include the fully qualified name of the invocation handler, from which the handler is created by calling the de-
fault constructor.

An example of this option in use can be found in
org.jboss.test.renoting.configuration. Socket dient Configurati onTest Case.

A fifth option, which exists primarily to support the injection of POJOs in the presence of the JBoss Microcontain-
er, is to pass an org.jboss.renoting. ServerConfiguration object to the Connect-
or. set Server Configuration() method. The following fragment duplicates the behavior of the first and second
examples above.

HashMap config = new HashMap();
config. put (Serverl nvoker. TI MEOUT, "120000");
Connector connector = new Connector(config);

/'l Create ServerConfiguration object for socket transport
Server Confi guration serverConfig = new Server Confi guration("socket");

/1 Add invokerLocat orParaneters (applicable to client and server)
Map | ocat or Config = new HashMap();

| ocat or Confi g. put ("server Bi ndAddr ess", "test.sonmedonai n.con');

| ocat or Confi g. put ("serverBi ndPort", "8084");

server Confi g. set | nvoker Locat or Par anet er s(| ocat or Confi g);

/1 Add serverParaneters (applicable to server)
Map server Paraneters = new HashMap();
| ocat or Confi g. put ("clientLeasePeriod", "10000");

JBoss January 11, 2010 20

Configuration

server Confi g. set Server Par anet er s(ser ver Par anet ers) ;

/1 Add invocation handl ers

Map handl ers = new HashMap();

handl ers. put ("nock", "org.jboss.renoting.transport. nock. Sanpl el nvocati onHandl er");
server Confi g. setl nvocati onHandl er s(handl ers);

connect or . set Server Confi gurati on(server Config);
connector.create();
connector.start();

For more information about Ser ver Conf i gur at i on, see the section "Declarative configuration: POJOS".

5.1.1.2. Declarative configuration: MBeans

One configuration option discussed in Section Programmatic configuration, passing an XML document to the Con-

nect or , Works in conjunction with the service archive deployer (SARDeployer) inside the JBoss Application Serv-
er to allow declarative configuration on the server side. In particular, the SARDeployer reads XMI documents con-
taining MBean descriptors from files whose name has the form "*-servicexml". When it sees a descriptor for a
Connect or MBean, it passes the descriptor's <conf i g> element to anewly created Connect or .

There are two ways in which to specify the server invoker configuration via a service xml file. The first is to spe-
cify just the InvokerL ocator attribute as a sub-element of the Connector MBean. For example, a possible configura-
tion for a Connector using a socket invoker that is listening on port 8084 on the test.somedomain.com address
would be:

<nbean code="org.jboss.renoting.transport. Connector"
name="j boss. renoti ng: servi ce=Connect or, t ransport =Socket "
di spl ay- name="Socket transport Connector">
<attri bute name="InvokerLocat or">
<! [CDATA[socket://test.somedonai n. com 8084]] >
</attribute>
<attribute name="Configuration">
<config>
<handl er s>
<handl er subsysten=" nock" >
org.j boss.renoting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

Note that all the server side socket invoker configurations will be set to their default valuesin this case. Also, it is
important to add CDATA to any locator uri that contains more than one parameter.

The other way to configure the Connector and its server invoker in greater detail is to provide an i nvoker sub-
element within the config element of the Configuration attribute. The only attribute of invoker element is transport,
which will specify which transport type to use (e.g.. socket, rmi, or http). All the sub-elements of the invoker ele-
ment will be attribute elements with a name attribute specifying the configuration property name and then the
value. Ani sPar amattribute can also be added to indicate that the attribute should be added to the locator uri, in the
case the attribute needs to be used by the client. An example using this form of configuration is as follows:

<nbean code="org.jboss.renoting.transport. Connector"
nane="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

JBoss January 11, 2010 21

Configuration

<attribute name="Configuration">
<confi g>

<i nvoker transport="socket">
<attri bute name="numAccept Threads">1</attri bute>
<attribute nanme="nmaxPool Si ze" >303</attri but e>
<attribute nanme="client MaxPool Si ze" i sParanF"true">304</attri bute>
<attribute nanme="socket Ti meout ">60000</attri but e>
<attribute nane="server Bi ndAddr ess">192. 168. 0. 82</ attri but e>
<attribute nanme="serverBi ndPort">6666</attri bute>
<attribute nanme="client Connect Addr ess">216. 23. 33. 2</ attri but e>
<attribute nanme="client ConnectPort">7777</attri bute>
<attribute name="enabl eTcpNoDel ay" isParam="true">fal se</attri bute>
<attribute name="backl og">200</attri bute>

</i nvoker >

<handl er s>
<handl er subsysten" nock" >
org.j boss.renoting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>
</ config>
</attribute>

</ nbean>

Also note that ${j boss. bi nd. addr ess} can be used for any of the bind address properties, which will be replaced
with the bind address specified to JBoss when starting (i.e. via the -b option).

All the attributes set in this configuration could be set directly in the locator uri of the InvokerLocator attribute
value, but would be much more difficult to decipher visually and is more prone to editing mistakes.

One of the components of alocator uri that can be expressed within the InvokerL ocator attribute is the path. For ex-
ample, can express alocator uri path of ‘foo/bar' viathe InvokerL ocator attribute as:

<attri bute name="InvokerLocat or">
<!'[CDATA| socket://test.sonedonai n. com 8084/ f oo/ bar]] >
</attribute>

To include the path using the Configuration attribute, can include a specific 'path’ attribute. So the same Invoker-
Locator can be expressed as follows with the Configuration attribute:

<attribute name="Configuration">
<config>
<i nvoker transport="socket">
<attribute nane="server Bi ndAddr ess" >t est . sonmedonmi n. conx/ attri but e>
<attribute name="serverBi ndPort">8084</attri bute>
<attribute name="pat h">foo/bar</attribute>
</i nvoker >

Note: The value for the 'path’ attribute should NOT start or end with a/ (slash).

5.1.1.3. Declarative configuration: POJOs

The last configuration option discussed in Section Programmatic configuration, passing an
org. j boss. renoting. Server Confi gurati on Object to the Connect or. set Server Confi gurati on() method, works
in conjunction with the JBoss Microcontainer, which supports the injection of POJOs. In particular, the Microcon-

JBoss January 11, 2010 22

Configuration

tainer reads XML documents containing POJO descriptors from files whose name has the form "*-beans.xml".

A Server Confi gurati on object holds four components:

transport (supplied by constructor)

invokerL ocatorParameters:. this is a map of al parameter names and values that will go into the
org.jboss.remoting.InvokerL ocator

serverParameters: thisis amap of parameter names and values that will be used by the server but will not go in-
to the InvokerL ocator

invocationHandlers: this is a map of invocation handlers. The key is the subsystem, or comma separated list of
subsystems.

A sample remoting-beans.xml file which duplicates the example in the previous sectionsis:

<?xm version="1.0" encodi ng="UTF-8"?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">

<bean nane="renoting:invocati onHandl er"
cl ass="org. j boss.rennting.transport. nock. Sanpl el nvocat i onHandl er"/ >

<bean name="renoti ng: server Confi gurati on"
cl ass="org. j boss.renoting. Server Confi guration">
<construct or>
<par anet er >socket </ par anet er >
</ const ructor >
<property nane="invoker Locat or Par anet er s" >
<map keyd ass="j ava.l ang. String" val ueC ass="j ava. |l ang. Stri ng">
<entry>
<key>server Bi ndAddr ess</ key>
<val ue>t est . sonedonmai n. conx/ val ue>
</entry>
<entry>
<key>server Bi ndPort </ key>
<val ue>8084</ val ue>
</entry>
</ map>
</ property>
<property name="server Par anet ers">
<map keyd ass="j ava.l ang. String" val ueC ass="java. |l ang. String">
<entry>
<key>cl i ent LeasePeri od</ key>
<val ue>10000</ val ue>
</entry>
</ map>
</ property>
<property nane="invocati onHandl ers" >
<map keyd ass="j ava.l ang. String"
val ueCl ass="org. j boss. renoti ng. Server | nvocati onHandl er" >
<entry>
<key>nock</ key>
<val ue><i nj ect bean="renoti ng: i nvocati onHandl er"/></val ue>
</entry>
</ map>
</ property>
</ bean>

<bean nane="renoting: connector" class="org.]jboss.renoting.transport. Connector">
<property nane="server Configuration">
<i nj ect bean="renoting: server Configuration"/>

JBoss January 11, 2010 23

Configuration

</ property>
</ bean>

</ depl oynent >

For more information about using the JBoss Microcontainer, see http://www.jboss.org/jbossmc/
[http://www.jboss.org/jbossmc/].

5.1.1.4. Callback client configuration

Remoting supports asynchronous computation and delivery of results through a callback mechanism, as described
in Section Callbacks. Callbacks are sent from the server side to the client side on a callback connection which isthe
reverse of the usual client to server connection. That is, a client invoker on the server side communicates with a
server invoker on the client side (in the case of push callbacks - again, see Section Callbacks). When a callback
connection is created, all of the configuration information passed to the server side Connect or is passed on to the
server side callback client invoker. It follows that callback client invokers are configured by way of the server side
Connect or .

5.1.2. Client side configuration

Invoker configuration on the client side parallels configuration on the server side, with the exception that (1) it op-
erates in asimpler environment (in particular, it does not assume the presence of an MBeanServer) and (2) it does
not support a declarative option. However, it does support versions of the first three server side programmatic op-
tions, with the d i ent class playing the central role played by the Connect or class on the server side.

Again, the most straightforward form of configuration is to put the configuration parameters on the | nvoker Locat -
or . For example, the fragment

String locatorURI = "socket://test.somedomai n. com 8084";
String parans = "/ ?client MaxPool Si ze=10&t i meout =360000" ;
| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
Client client = new Client(locator);

client.connect();

creates ad i ent using the socket transport to connect to a server on host test.somedomain.com, listening on port
8084. It also passes in two parameters, "clientMaxPool Size" and "timeout™, that will be used by the client invoker.

It is also possible to use configuration maps on the client side. The following code fragment accomplishes all that
the previous fragment does, but it passes one parameter by way of the | nvoker Locat or and passes the other by way
of a configuration map. It also passes in a non-string object, a Socket Fact ory:

String locatorURI = "socket://test.somedomai n.com 8084";

String parans = "/ ?client MaxPool Si ze=10";

| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURl);

HashMap config = new HashMap();

config. put (Serverl nvoker. TI MEOUT, "360000");

config. put (Renmoti ng. CUSTOM SOCKET_FACTORY, new MySocket Factory());
Cient client = new Cient(locator, config);

client.connect();

Note that the value of Server I nvoker. TI MEQUT is "timeout”, and the value of Renoti ng. CUSTOM SOCKET FACTORY

JBoss January 11, 2010 24

http://www.jboss.org/jbossmc/

Configuration

is "customSocketFactory". These configuration map keys are discussed throughout the chapter and accumulated in
section Configuration by properties. Also, socket factory configuration is covered in Socket factories and server
socket factories.

Finally, athird programmatic option is available for those configuration properties which happen to be settable cli-
ent invoker properties. In the following fragment, the client invoker is obtained from the d i ent and a Socket -
Fact ory ispassed to it by way of a setter method:

String locatorURI = "socket://test.somedomai n. com 8084";
String parans = "/ ?client MaxPool Si ze=10";

| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURl);
HashMap config = new HashMap();

config. put (Serverl nvoker. TI MEOUT, "360000");

Client client = new Client(locator, config);
client.connect();

Socket Factory sf = new MySocket Factory();

dientlnvoker clientlnvoker = client.getlnvoker();
clientlnvoker. set Socket Fact ory(sf);

Note. The d i ent creates the client invoker during the call to di ent . connect (), S0 this option only works after
that method has been called.

Note. Preference isgiven to valuesin the I nvoker Locat or . For example, in

String locatorURI = "socket://test.somedomai n. com 8084/ ?cl i ent MaxPool Si ze=10";
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURl);

HashMap config = new HashMap();

config. put ("clientMaxPool Si ze", "20");

Client client = new Client(locator, config);

the value of the variable cl i ent MaxPool Si ze would be set to 10. As of release 2.5.2, that behavior can be reversed
by setting the parameter or g. j boss. renot i ng. Renot i ng. CONFI G_OVERRI DES_LOCATCR (actual value "configOver-
ridesL ocator") to true. As always, in determining the value of the variable confi goverri desLocat or, preferenceis
given to the | nvoker Locat or . But if the value of "configOverridesL ocator” is set to true in the | nvoker Locat or , Or
if "configOverridesLocator” is absent from the | nvoker Locat or but it is set to "true" in the configuration map, then
preference will be given to valuesin the configuration map. For example, in

String locatorURI = "socket://test.somedomai n. com 8084/ ?cl i ent MaxPool Si ze=10";
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);

HashMap config = new HashMap();

config. put ("client MaxPool Si ze", "20");

config. put("configOverridesLocator™, "true");

Cient client = new Cient(locator, config);

the value of the variable cl i ent MaxPool Si ze would be set to 20.

5.2. Handlers

Handlers are classes that the invocation is given to on the server side (the final target for remoting invocations). To
implement a handler, all that is needed isto implement the or g. j boss. renot i ng. Server | nvocat i onHandl er inter-
face. There are atwo ways in which to register a handler with a Connector. The first is to do it programmatically.

JBoss January 11, 2010 25

Configuration

The second is via service configuration. For registering programmatically, can either pass the Serverlnvocation-
Handler reference itself or an ObjectName for the ServerinvocationHandler (in the case that it is an MBean). To
pass the handler reference directly, call Connect or: : addl nvocat i onHandl er (String subsystem Serverlnvoca-
ti onHandl er handl er) . For example (fromor g. j boss. renot i ng. sanpl es. si npl e. Si npl eSer ver):

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURl);
Connect or connector = new Connector();

connector. set | nvoker Locat or (| ocat or. get Locator URI ());
connector.create();

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocati onHandl er () ;
[l first parameter is sub-system name. can be any String val ue.
connect or. addl nvocat i onHandl er ("sanpl e", invocati onHandl er);

connector.start();

To pass the handler by ObjectName, call Connect or: : addl nvocat i onHandl er (String subsystem Obj ect Nane
handl er Qbj ect Nane) . For example (from or g. j boss. t est. renot i ng. handl er . nbean. Ser ver Test):

MBeanServer server = MBeanServerFactory. creat eMBeanServer();
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
Connect or connector = new Connector();

connector. set | nvoker Locat or (| ocat or. get Locat or URI ());
connector.start();

server.regi st er MBean(connector, new Obj ect Name("test:type=connector,transport=socket"));

/'l now create Miean handl er and regi ster with nbean server
MBeanHandl er handl er = new MBeanHandl er () ;

(bj ect Nane obj Nane = new Obj ect Nane("test:type=handl er");
server. regi st er MBean(handl er, obj Nane) ;

connect or. addl nvocati onHandl er ("test”, obj Nane);

Isimportant to note that if not starting the Connector via the service configuration, will need to explicitly register it
with the MBeanServer (will throw exception otherwise).

If using a service configuration for starting the Connector and registering handlers, can either specify the fully
qualified class name for the handler, which will instantiate the handler instance upon startup (which requires there
be avoid parameter constructor), such as:

<handl er s>
<handl er subsystenm=" nock" >
org. jboss.rennting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>

where MockServerlnvocationHandler will be constructed upon startup and registered with the Connector as a hand-
ler.

Can a'so use an ObjectName to specify the handler. The configuration is the same, but instead of specifying afully
qualified class name, you specify the ObjectName for the handler, such as (can see nbeanhandl er - servi ce. xni
under remoting tests for full example):

<handl er s>
<handl er subsysten"nock" >t est:type=handl er </ handl er >
</ handl er s>

JBoss January 11, 2010 26

Configuration

The only requirement for this configuration is that the handler MBean must already be created and registered with
the MBeanServer at the point the Connector is started.

Handler implementations

The Connectors will maintain a reference to the handler instances provided (either indirectly via the MBean proxy
or directly viathe instance object reference). For each request to the server invoker, the handler will be called upon.
Since the server invokers can be multi-threaded (and in most cases would be), this means that the handler may re-
ceive concurrent calls to handle invocations. Therefore, handler implementations should take care to be thread safe
in their implementations.

Stream handler

There is dso an invocation handler interface that extends the ServerlnvocationHandler interface specificaly for
handling of input streams as well as normal invocations. See the section on sending streams for further details. As
for Connector configuration, it is the same.

HTTP handlers

Since there is extra information needed when dealing with the http transport, such as headers and response codes,
special consideration is needed by handlers. The handlers receiving http invocations can get and set this extra in-
formation viathe InvocationRequest that is passed to the handler.

Server invoker for the http transport will add the following to the InvocationRequest's request payload map:

MethodType - the http request type (i.e., GET, POST, PUT, HEADER, OPTIONS). Can use the contant value HT-
TPMetadataConstants. METHODTY PE, if don't want to use the actual string 'MethodType' as the key to the request

payload map.

Path - the url path. Can use the contant value HTTPM etadataConstants.PATH, if don't want to use the actual string
'Path’ as the key to the request payload map.

HttpVersion - the client's http version. Can use the contant value HTTPMetadataConstants HTTPVERSION, if
don't want to use the actual string 'HttpVersion' as the key to the request payload map.

Other properties from the original http request will also be included in the request payload map, such as request
headers. Can reference org.jboss.test.remoting.transport.http.method.MethodlnvocationHandler as an example for
pulling request properties from the InvocationRequest.

The only time thiswill not be added is a POST request where an InvocationRequest is passed and is not binary con-
tent type (application/octet-stream).

The handlers receiving http invocations can also set the response code, response message, response headers, and
content-type. To do this, will need to get the return payload map from the InvocationRequest passed (via its getRe-
turnPayload() method). Then populate this map with whatever properties needed. For response code and message,
will need to use the following keys for the map:

ResponseCode - Can use the constant value HTTPMetaDataConstants. RESPONSE_CODE, if don't want to use

JBoss January 11, 2010 27

Configuration

the actua string 'ResponseCode’ as they key. IMPORTANT - The value put into map for this key MUST be of
type java.lang.Integer.

ResponseCodeM essage - Can use the constant value HTTPM etadataConstants. RESPONSE_ CODE_MESSAGE,
if don't want to use the actual string 'ResponseCodeM essage’ as the key. The value put into map for this key should
be of type java.lang.String.

Is also important to note that ALL http requests will be passed to the handler. So even OPTIONS, HEAD, and PUT
method requests will need to be handled. So, for example, if want to accept OPTIONS method requests, would
need to populate response map with key of 'Allow' and value of 'OPTIONS, POST, GET, HEAD, PUT', in order to
tell calling client that all these method types are alowed. Can see an example of how to do this within
org.jboss.test.remoting.transport.http.method.M ethodI nvocationHandl er.

The PUT request will be handled the same as a POST method request and the PUT request payload will be in-
cluded within the InvocationRequest passed to the server handler. It is up to the server handler to set the proper
resonse code (or throw proper exception) for the processing of the PUT request. See ht-
tp:/lwww.ietf.org/rfc/rfc2616.txt?number=2616 [http://www.ietf.org/rfc/rfc2616.txtnumber=2616], section 9.6 for
details on response codes and error responses).

HTTP Client

The HttpClientinvoker will now put the return from HitpURLConnection getHeaderFields() method into the
metadata map passed to the Client's invoke() method (if not null). This means that if the caller passes a non-null
Map, it can then get the response headers. It isimportant to note that each response header field key in the metadata
map is associated with alist of response header values, so to get a value, would need code similar to:

oj ect response = renotingCient.invoke((Object) null, metadata);
String allowalue = (String) ((List) netadata.get("Allow').get(0);

Can reference org.jboss.test.remoting.transport.http.method. HT TPInvoker TestClient for an example of this.

Note that when making a http request using the OPTIONS method type, the return from the Client's invoke() meth-
od will ALWAY Sbenull.

Also, if the response code is 400, the response returned will be that of the error stream and not the standard input
stream. So isimportant to check for the response code.

Two values that will always be set within the metadata map passed to the Client's invoke() method (when not null),
is the response code and response message from the server. These can be found using the keys:

ResponseCode - Can use the constant value HTTPMetaDataConstants. RESPONSE _CODE, if don't want to use
the actual string 'ResponseCode’ as the key. IMPORTANT - The value returned for this key will be of type
javalang.lnteger.

ResponseCodeM essage - Can use the constant value from HTTPMetadataCon-
stants. RESPONSE _CODE_MESSAGE, if don't want to use the actual string 'ResponseCodeMessage’ as the key.
The value returned for this key will be of type javalang.String.

An example of getting the response code can be found within
org.jboss.test.remoting.transport.http.method.HT TPInvokerTestClient.

JBoss January 11, 2010 28

http://www.ietf.org/rfc/rfc2616.txt?number=2616
http://www.ietf.org/rfc/rfc2616.txt?number=2616

Configuration

5.3. Discovery (Detectors)

Domains

Detectors have the ability to accept multiple domains. What domains that the detector will accept as viewable can
either be set programmatically via the method:

public void setConfiguration(org.w3c.dom El ement xm)

or by adding to jboss-service.xml configuration for the detector. The domains that the detector is currently accept-
ing can be retrieved from the method:

public org.w3c.dom El enent get Configuration()
The configuration xml is a MBean attribute of the detector, so can be set or retrieved viaJM X.

There are three possible options for setting up the domains that a detector will accept. The first is to not call the
set Confi guration() method (or just not add the configuration attribute to the service xml). Thiswill cause the de-
tector to use only its domain and is the default behavior. This enables it to be backwards compatible with earlier
versions of JBoss Remoting (JBoss 4, DR2 and before).

The second is to call the set Confi guration() method (or add the configuration attribute to the service xml) with
the following xml element:

<donai ns>
<domai n>donai nl</ donmai n>
<domai n>domai n2</ domai n>
</ domai ns>

where domai n1 and dorai n2 are the two domains you would like the detector to accept. Thiswill cause the detector
to accept detections only from the domains specified, and no others.

The third and final option is to call the setConfiguration() method (or add the configuration attribute to the service
xml) with the following xml element:

<domai ns>
</ domai ns>

Thiswill cause the detector to accept al detections from any domain.

By default, remoting detection will ignore any detection message the it receives from a server invoker running
within its own jvm. To disable this, add an element called 'loca’ to the detector configuration (alongside the do-
main element) to indicate should accept detection messages from local server invokers. This will be false by de-
fault, so maintains the same behavior as previous releases. For example:

<donmai ns>
<domai n>donai nl</ domai n>
<domai n>donmai n2</ domai n>
</ domai ns>
<l ocal / >

JBoss January 11, 2010 29

Configuration

An example entry of a Multicast detector in the jboss-service.xml that accepts detections only from the roxanne and
sparky domains using port 5555, including serversin the same jvm, is asfollows:

<nbean code="org.j boss.renoting.detection. multicast.MilticastDetector"
nanme="j boss. renoti ng: servi ce=Det ector, transport=nul ticast">
<attribute name="Port">5555</attribute>
<attribute name="Configuration">
<donmi ns>
<donmi n>r oxanne</ domai n>
<domai n>spar ky</ domai n>
</ domai ns>
<l ocal / >
</attribute>
</ nbean>

Global Detector Configuration

The following are configuration attributes for all the remoting detectors.

DefaultTimeDelay - amount of time, in milliseconds, which can elapse without receiving a detection event before
suspecting that a server is dead and performing an explicit invocation on it to verify it isalive. If thisinvocation, or
ping, fails, the server will be removed from the network registry. The default is 5000 milliseconds.

HeartbeatTimeDelay - amount of time to wait between sending (and sometimes receiving) detection messages.
The default is 1000 milliseconds.

JNDIDetector

Port - port to which detector will connect for the INDI server.
Host - host to which the detector will connect for the INDI server.

ContextFactory - context factory string used when connecting to the JINDI server. The default is
org.jnp.interfaces. Nam ngCont ext Factory .

URLPackage - url package string to use when connecting to the JINDI server. The default is
org.j boss.nam ng:org.jnp.interfaces.

CleanDetectionNumber - Sets the number of detection iterations before manually pinging remote server to make
sure il alive. Thisis needed since remote server could crash and yet till have an entry in the INDI server, thus
making it appear that it is still there. The default valueis5.

Can either set these programmatically using setter method or as attribute within the remoting-servicexml (or any-
where else the service is defined). For example:

<nbean code="org.j boss.renoting. detection.jndi.JND Detector"
nane="j boss. renoti ng: servi ce=Det ector, transport =j ndi ">
<attribute name="Host">| ocal host</attri bute>
<attribute name="Port">5555</attri bute>
</ nbean>

If the INDIDetector is started without the Host attribute being set, it will try to start alocal INP instance (the JBoss
JNDI server implementation) on port 1088.

JBoss January 11, 2010 30

Configuration

MulticastDetector

Defaultl P - The IP that is used to broadcast detection messages on via multicast. To be more specific, will be theip
of the multicast group the detector will join. This attribute isignored if the Address has already been set when star-
ted. Default is 224.1.9.1.

Port - The port that is used to broadcast detection messages on via multicast. Default is 2410.
BindAddress - The address to bind to for the network interface.

Address - The IP of the multicast group that the detector will join. The default will be that of the DefaultlP if not
explicitly set.

Buffer Size - The size of the buffer used by the MulticastSocket. The default is 10000.

If any of these are set programmatically, need to be done before the detector is started (otherwise will use default
values).

5.4. Transports (Invokers)

This section covers configuration issues for each of the transports, beginning with material that appliesto all trans-
ports. The material in alater section in this chapter, Socket factories and server socket factories, also appliesto all
transports.

5.4.1. Features introduced in Remoting version 2.4

A number of transport independent features are introduced in Remoting version 2.4.

5.4.1.1. Binding to 0.0.0.0

Before version 2.4, a Remoting server could bind to only one specific |P address. In particular, the address 0.0.0.0
was trandated to the host returned by j ava. net . I net Addr ess. get Local Host () (or its equivalent IP address). As
of version 2.4 [and later releases in the 2.2 serieg], a server started with the address 0.0.0.0 binds to all available in-
terfaces.

Note. If 0.0.0.0 appears in the I nvoker Locat or, it needs to be tranglated to an address that is usable on the client
side. If the system property I nvokerLocator. BIND BY_HOST (actual value "remoting.bind_by_host") is set to
"true', the InvokerLocator host will be transformed to the vaue returned by |InetAd-
dress. get Local Host () . get Host Name() . Otherwise, it will be transformed to the value returned by I net Ad-
dress. get Local Host (). get Host Address() .

5.4.1.2. Multihome servers

As of release 2.4, besides binding to all available interfaces, it is also possible to configure a server to bind to a
subset of the interfaces available on a given host. Suppose, for example, that a host machine has NICs configured
with addresses 10.32.4.2, 192.168.4.2, and 192.168.8.2, and suppose that 192.168.8.2 is on a LAN from which ac-
cessis meant to be denied. It is now possible to create asingle server that bindsto 10.32.4.2 and 192.168.4.2.

JBoss January 11, 2010 31

Configuration

It would be convenient to be able to create an | nvoker Locat or that looks something like:

socket://10. 32. 4. 2&192. 168. 4. 2: 6500

but, unfortunately, that violates the URI syntax. Instead, a special placeholder, "multihome”, is used in the host po-
sition, and the actual host addresses are given in the query component, e.g.,

socket:// mul ti honme/ ?hones=10. 32. 4. 2: 6500! 192. 168. 4. 2: 6500

An abbreviated syntax allows factoring out the bind port:

socket :// mul ti honme: 6500/ ?hones=10. 32. 4. 2! 192. 168. 4. 2

The valuein the port position is treated as a default value which can be overriden in the "homes' parameter:

socket :// mul ti hone: 6500/ ?hones=10. 32. 4. 2! 192. 168. 4. 2: 6501

binds to 10.32.4.2:6500 and 192.168.4.2:6501.

In the presence of a NAT router, it may be necessary for the client to connect to addresses different than the bind
addresses, and a set of connect addresses may be specified with a " connecthomes” parameter:

socket:// mul ti honme/ ?hones=10. 32. 4. 2: 6500! 192. 168. 4. 2: 6501
&connect honmes=10. 32. 42. 2: 7500! 192. 168. 42. 2: 7501

specifies a server that binds to 10.32.4.2:6500 and 192.168.4.2:6501, as before, but now a client connects to it us-
ing the addresses 10.32.42.2:7500 and 192.168.42.2:7501.

Multihome servers may be configured, also, in *-service.xml MBean files and * -beans.xml POJO files. The follow-
ing MBean definition is equivalent to the preceding locator:

<nbean code="org.jboss.renoting.transport. Connector"
nane="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- nanme="Socket transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="socket">

<attribute nanme="hones" >
<hone>10. 32. 4. 2: 6500</ hone>
<hone>192. 168. 4. 2: 6501</ hone>

</attribute>

<attribute nanme="connect hones" >
<connect hone>10. 32. 42. 2: 7500</ connect home>
<connect home>192. 168. 42. 2: 7501</ connect hone>

</attribute>

</i nvoker >
<handl er s>

</ handl er s>
</ confi g>
</attribute>
</ mbean>

JBoss January 11, 2010 32

Configuration

The "serverBindPort" and "clientConnectPort" attributes may be used to give default values for bind ports and con-
nect ports, respectively.

The same server may be configured with the org. j boss. renoti ng. ServerlInvocation object as well. For ex-
ample,
Connect or connector = new Connector();

/1 Create ServerConfiguration object for socket transport
Server Confi guration serverConfig = new Server Confi guration("socket");

/1 Add invokerLocatorParaneters (applicable to client and server)
Map | ocat or Config = new HashMap();

| ocat or Confi g. put ("homes", "10.32.4.2:6500!192. 168. 4. 2: 6501") ;
| ocat or Confi g. put ("connect homes", "10.32.42.2:7500!192. 168. 42. 2: 7501") ;

server Confi g. set | nvoker Locat or Par anmet er s(| ocat or Confi g) ;

// Add invocation handl ers

connect or. set Server Conf i gurati on(server Config);
connector.create();
connector.start();

is equivalent to the preceding MBean definition.

Note. The Strings "homes* and "connecthomes' are available as constants in the | nvoker Locat or class: | nvoker -
Locat or . HOVES_KEY and | nvoker Locat or . CONNECT_HOVES_KEY.

5.4.1.3. Socket creation listeners

Sometimesit is useful to be able to grab a socket right after it has been created to either apply some additional con-
figuration or retrieve some information. It is possible to configure Remoting with instantions of the interface
org.j boss. renoting. socketfactory. Socket Creati onLi st ener

public interface Socket CreationLi stener

{
/**
* Call ed when a socket has been created.
*
* @aram socket socket that has been created
* @aram source Socket Factory or Server Socket that created the socket
* @hrows | OException
*/
voi d socket Creat ed(Socket socket, bject source) throws | OException;
}

Socket creation listeners can be configured through the use of the keys
org. j boss. renoting. Renot i ng. SOCKET_CREATI ON_CLI ENT_LI STENER (actual value "socketCreationClientListen-
er') and org.jboss. renoting. Renoting. SOCKET_CREATI ON_SERVER_LI STENER (actual value "socketCreation-
ServerListener"), which install listeners for j avax. net. Socket Fact oryS and j ava. net . Ser ver Socket S, respect-
ively. The value associated with these keys may be (1) an object that implements Socket Cr eat i onLi st ener or (2)
astring that names a class that implements Socket Cr eat i onLi st ener . In the latter case, the default constructor will
be used to create an object of the designated class.

JBoss January 11, 2010 33

Configuration

5.4.1.4. Making client IP address available to application

All of the transports (bisocket, sslbisocket, http, https, rmi, sslrmi, servlet, sslservlet, socket, and sslsocket) capture
the IP address of the client side of a TCP connection from client to server and make it available to application code
on both the «client sde and server side On the client side, the method
org.jboss.renoting. dient.get Addr essSeenBySer ver (), With signature

public | net Address get AddressSeenByServer () throws Throwabl e

returns the | P address of the client as seen by the server. On the server side, the same IP address is placed in the re-
quest payload map held by the org.jboss.remoting. Invocati onRequest. It may be retrieved by the
org. j boss. renoting. Serverl nvocati onHandl er asfollows:

public Object invoke(lnvocati onRequest invocation throws Throwabl e

{

| net Addr ess address = invocation. get Request Payl oad() . get (Renpti ng. CLI ENT_ADDRESS) ;

5.4.1.5. Support for IPv6 addresses
org. j boss. renoting. | nvoker Locat or Will now accept IPv6 | P addresses. For example,

socket://[::1]:3333/?ti neout =10000

socket://[::]:4444/?ti neout =10000

socket://[::ffff:127.0.0.1]:5555/?ti meout =10000

socket://[fe80::205:9af f:fe3c: 7800%] : 6666/ ?t i meout =10000

socket:// mul ti home/ ?honmes=[f €80: : 205: 9af f: f e3c: 7800%/] : 7777! [f €80: : 214: 22f f : f eef : 68bb%4] : 8888

5.4.1.6. Delayed destruction of client invokers
Multiple clients may share asingle client invoker. For example, in the code

I nvoker Locator | ocator = new | nvokerLocator("socket://127.0.0. 1: 5555");
Cient clientl new Client(locator);
Client client2 new Client(locator);

client1 and client2 will both communicate with the server through a single
org.jboss.renoting. transport.socket.M croSocket d i ent | nvoker. The number of d i ent susing asingle cli-
ent invoker is tracked, and the invoker is destroyed when the count goes to zero. It may be useful to delay the de-
struction of the invoker when it is known that another d i ent will want to use it in the near future. The delayed de-
struction of a client invoker may be achieved through the use of the key d i ent. | N\VOKER_DESTRUCTI ON_DELAY
(actual value "invokerDestructionDelay"). For example,

I nvoker Locator | ocator =

new | nvoker Locat or ("socket://127.0.0. 1: 5555/ ?i nvoker Dest r uct i onDel ay=5000") ;
Client client = new Cient(locator);
client.connect();

client.disconnect();

will cause cl i ent to delay the destruction of its client invoker (assuming cl i ent is the only user), by 5000 milli-

JBoss January 11, 2010 34

Configuration

seconds. Of course, "invokerDestructionDelay" may be passed to the c i ent by way of a configuration map, as
well.

5.4.2. Server Invokers

The following configuration properties are common to all the current server invokers.

server BindAddress - The address on which the server binds to listen for requests. The default is an empty value
which indicates the server should be bound to the host provided by the locator url, or if this value is null, the local
host as provided by | net Addr ess. get Local Host () .

serverBindPort - The port to listen for requests on. A value of O or less indicates that a free anonymous port
should be chosen.

maxNumT hreadsOneway - specifies the maximum number of threads to be used within the thread pool for ac-
cepting one way invocations on the server side. This property will only be used in the case that the default thread
pool is used. If a custom thread pool is set, this property will have no meaning. This property can also be retrieved
or set programmatically viathe MaxNurmber Of Oneway Thr eads property.

onewayThreadPool - specifies either the fully qualified class name for a class that implements the
org.jboss.util.threadpool . ThreadPool interface or the IMX ObjectName for an MBean that implements the
org. jboss. util.threadpool . Thr eadPool interface. This will replace the default
org.jboss.util.threadpool . Basi cThreadPool used by the server invoker.

Note that this value will NOT be retrieved until the first one-way (server side) invocation is made. So if the config-
uration is invalid, will not be detected until this first call is made. The thread pool can also be accessed or set via
the oneway Thr eadPool property programmatically.

Important to note that the default thread pool used for the one-way invocations on the server side will block the
calling thread if al the threads in the pool are in use until oneis released.

5.4.3. Configurations affecting the invoker client

There are some configurations which will impact the invoker client. These will be communicated to the client in-
voker via parameters in the Locator URI. These configurations can not be changed during runtime, so can only be
set up upon initial configuration of the server invoker on the server side. The following is a list of these and their
effects.

clientConnectPort - the port the client will use to connect to the remoting server. This would be needed in the case
that the client will be going through a router that forwards requests made externally to a different port internally.

clientConnectAddress - the ip or hostname the client will use to connect to the remoting server. This would be
needed in the case that the client will be going through a router that forwards requests made externally to a differ-
ent ip or host internaly.

If no client connect address or server bind address specified, will use the local host's address (via I net Ad-
dress. get Local Host () . get Host Addr ess())

Note Therole played by "clientConnectAddress' and "clientConnectPort" deserves some further elaboration. When
aserver is set up, it is either given an 1 nvoker Locat or explicitly, or it is given enough information in an MBean

JBoss January 11, 2010 35

Configuration

XML fileor aServer Confi gurati on POJO from which to construct an | nvoker Locat or , and a client uses the host
field and port field in the | nvoker Locat or to determine how to connect to the server. It follows that if an explicit
I nvoker Locat or is passed to the server, then the host and port fields are either given explicitly or are generated, so
there is no need for "clientConnectAddress' or "clientConnectPort" fields. However, if the server is configured by
way of an MBean XML file or a Server Confi gur ati on, and no explicit | nvoker Locat or is specified, then the "cli-
entConnectAddress" and "clientConnectPort" parameters can be used to specify the host and port fields in the I n-
voker Locat or . If they are omitted, then the host and port fields will be derived from the values of the "server-
BindAddress' and "serverBindPort" parameters (or generated, if those fields are omitted). Therefore, thereisarole
for the "clientConnectAddress' and "clientConnectPort" parameters only if clients are meant to connect to a host
and port different than the bind host and bind port. Such a situation might occur in the presence of a transating
firewall between the client and the server.

5.4.4. How the server bind address and port is determined

If the serverBindAddress property is set, the server invoker will bind to that address. Otherwise, it will, with one
exception, use the address in the InvokerL ocator (if there is one). The exception is the case in which the clientCon-
nectAddress property is set, which indicates that the adddess in the InvokerLocator is not the real address of the
server's host. In that case, and in the case that there is no address in the InvokerLocator, the server will bind to the
address of the local host, as determined by the call

| net Addr ess. get Local Host (). get Host Addr ess() ;

In other words, the logicis

if (serverBi ndAddress is set)
use it

else if (the host is present in the InvokerLocator and clientConnect Address is not set)
use host from | nvokerLocat or

el se
use | ocal host address

If the serverBindPort property is set, it will be used. If thisvalue is O or a negative number, then the next available
port will be found and used. If the serverBindPort property is not set, but the clientConnectPort property is set, then
the next available port will be found and used. If neither the serverBindPort nor the clientConnectPort is set, then
the port specified in the original InvokerLocator will be used. If thisis 0 or a hegative number, then the next avail-
able port will be found and used. In the case that the next available port is used because either the serverBindPort
or the original InvokerL ocator port value was either O or negative, the InvokerLocator will be updated to reflect the
new port value.

Note. In the case that a bind port isn't specified, the utility class org.j boss.renoting.transport.PortUil is
used to supply an available port. By default, it will look for a port in the range 1024 to 65535, inclusively. As of re-
lease 2.5.2, PortUtil can be configured to search a smaller range by setting the values PortUtil.MIN_PORT (actua
value "minPort") and / or PortUtil.MAX_PORT (actual value "maxPort") in the InvokerLocator, a configuration
map, an MBean XML file, or a Server Confi gurati on object. The range is static; that is, whenever "minPort" or
"maxPort" are set, they affect al subsequent calls in the JVM. Note that Port uti| will apply a new "minPort"
value only if it is greater than the current value, and it will apply a new "maxPort" value only if it is less than the
current value. And it will never apply a new value when the result would be such that the value of "maxPort"
would be less than the value of "minPort".

5.4.5. Socket transport

JBoss January 11, 2010 36

Configuration

The Socket transport is one of the more complicated invokers mainly because allows the highest degree of config-
uration. To better understand how changes to configuration properties for the Socket invoker (both client and serv-
er) will impact performance and scalability, will discuss the implementation and how it works in detail.

5.4.5.1. How the Socket transport works

Server

When the socket server invoker is started, it will create one, and only one, instance of j ava. net . Server Socket for
each configured bind address. Typically there would exactly one Ser ver Socket , but there would be more than one
for a mltihome server with multiple bind addresses. Upon being started, it will also create and start a number of
threads to be used for accepting incoming requests from the ServerSocket. These threads are called the accept
threads and the number of them created is controlled by the "numAcceptThreads' property. If "numAc-
ceptThreads' is set to "n" (it defaults to 1), there will be "n" accept threads per Ser ver Socket . When these accept
threads are started, they will call accept() on the ServerSocket and block until the ServerSocket receives a request
from a client, where it will return a Socket back to the accept thread who called the accept() method. As soon as
this happens, the accept thread will try to pass off the Socket to another thread for processing.

The threads that actually process the incoming request, referred to as server threads
(org.jboss.renoting. transport.socket. Server Thread), are stored in a pool. The accept thread will try to re-
trieve the first available server thread from the pool and hand off the Socket for processing. If the pool does not
contain any available server threads and the max pool size has not been reached, a new server thread will be created
for processing. Otherwise, if the max pool size has been reached, the accept thread will wait for one to become
available (will wait until socket timeout has been reached). The size of the server thread pool is defined by the
'maxPool Size' property. As soon as the accept thread has been able to hand off the Socket to a server thread for pro-
cessing, it will loop back to ServerSocket and call accept() on it again. Thiswill continue until the socket server in-
voker is stopped.

The server thread processing the request will be the thread of execution through the unmarshalling of the data, call-
ing on the server invocation handler, and marshalling of response back to the client. After the response has been
sent, the server thread will then hold the socket connection and wait for another request to come from this client. It
will wait until the socket is closed by the client, a socket timeout occurs, or receives another request from the client
in which to process. When the client socket connection session is closed, meaning timeout or client closed socket
connection, then the thread will return itself to the pool.

If al the server threads from the pool are in use, meaning have a client connection established, and the pool has
reached its maximum value, the accept threads (no matter how many there are) will have to wait until one of the
server threads is available for processing. This why having a large number of accept threads does not provide any
real benefit. If all the accept threads are blocked waiting for server thread, new client requests will then be queued
until it can be accepted. The number of requests that can be queued is controlled by the "backlog” property and can
be useful in managing sudden burstsin requests.

If take an example with a socket server invoker that has max pool set to 300, accept threads is 2, and backlog is
200, will be able to make 502 concurrent client calls. The 503rd client request will get an exception immediately.
However, this does not mean all 502 requests will be guaranteed to be processed, only the first 300 (as they have
server threads available to do the processing). If 202 of the server threads finish processing their requests from their
initial client connections and the connection is released before the timeout for the other 202 that are waiting (200
for backlog and 2 for accept thread), then they will be processed (of course thisis a request by request determina-
tion).

JBoss January 11, 2010 37

Configuration

As of JBossRemoting 2.2.0 release, can also add configuration for cleaning up idle server threads using the 'idle-
Timeout' configuration property. Setting this property to a value of greater than zero will activate idle timeout
checking, which is disabled by default. When enabled, the idle timeout checker will periodically iterate through the
server threads that are active and inactive and if have not processed a request within the designated idle timeout
period, the server thread will be shutdown and removed from corresponding pool. Active server threads are ones
that have a socket connection associated with it and are in a blocked read waiting for data from the client. Inactive
server threads are ones that have finished processing on a particular socket connection and have been returned to
the thread pool for later reuse.

Note. A server thread that is engaged in a long invocation when the idle timeout checker is activated can be re-
moved from its thread pool and marked for later destruction once the invocation is complete. The "idleTimeout"
value should be configured accordingly.

Note. As of Remoting version 2.4, some changes have been made to Ser ver Thr ead.

1. Onceaserver thread has completed an invocation, it will try to read another invocation instead of returning to
the thread pool. It follows that the fact that a server thread is not in the thread pool does not necessarily indic-
ate that it is busy: it might just be blocked in al nput St ream read() . Therefore, when an accept thread needs
aserver thread and the thread pool is empty, it will try to appropriate server threads which are not in the thread
pool. While a server thread is in the middle of processing an invocation, it cannot be interrupted, but if it is
blocked waiting for the next invocation, it is available to be interrupted. However, when the server is busy, it
is conceivable for an accept thread to grab a server thread and before the server thread gets a chance to read an
invocation, it gets interrupted again by the accept thread. To prevent server threads from bouncing around like
that, the parameter Ser ver Thr ead. EVI CTABI LI TY_TI MEOUT (actual value "evictabilityTimeout) has been intro-
duced. If less than that period has elapsed since the server thread has started waiting for the next invocation, it
will not alow itself to be pre-empted.

2. Prior to version 2.4, if a server thread experienced a j ava. net . Socket Ti meout Except i on, it would return it-
self to the thread pool and could not be reused until a new socket connection was created for it to use. In prin-
ciple, it would be more efficient for the server thread simply to try again to read the next invocation. Unfortu-
nately, j ava. i 0. oj ect | nput St r eam ceases to function once it experiences a Socket Ti meout Except i on. The
good newsisthat or g. j boss. seri al . i 0. JBossObj ect I nput St r eam made available by the JBossSerialization
project, does not suffer from that problem. Therefore, when it experiences a Socket Ti meout Except i on, & Serv-
er thread will check whether it is using a JBossbj ect I nput St reamor not and act accordingly. Just to allow
for the possibility that an application is using yet another version of bj ect I nput Stream the parameter
Ser ver Thr ead. CONTI NUE_AFTER_TI MEQUT (actual value "continueAfterTimeout") allows the behavior follow-
ing aSocket Ti meout Except i on to be configured explicitly.

Note. When a Ser ver Thread receives an invocation, it enters a synchronized method to prevent itself from being
interrupted while it is processing the invocation. When Socket Ser ver | nvoker . st op() is called, it calls the syn-
chronized method Ser ver Thr ead. shut down() for each Server Thread, which insures that the server does not shut
down until al currently invocations are complete.

However, if it happens that an invocation gets hung up for some reason, the server would be prevented from shut-
ting down. For example, the Ser ver I nvocat i onHandl er could have a bug, or an attempt to write to a disconnected
network could get hung up. As of Release 2.5.2, there is an option to shut down a Socket Ser ver | nvoker immedi-
ately without waiting for current invocations to complete. This option can be enabled by setting the property "imme-
diateShutdown" to "true”.

JBoss January 11, 2010 38

Configuration

Client

When the socket client invoker makesits first invocation, it will check to see if there is an available socket connec-
tioninits pool. Since is the first invocation, there will not be and will create a new socket connection and use it for
making the invocation. Then when finished making invocation, will return the still active socket connection to the
pool. As more client invocations are made, is possible for the number of socket connections to reach the maximum
allowed (which is controlled by 'clientMaxPool Size' property). At this point, when the next client invocation is
made, it will wait up to some configured number of milliseconds, a which point it will throw an
org.j boss. renoting. Cannot Connect Excepti on. The number of milliseconds is given by the parameter M -
croSocket d i ent | nvoker . CONNECTI ON_WAI T (actual value "connectionWait"), with a default of 30000 milli-
seconds. Note that if more than one call retry is configured (see next paragraph), the Cannot Connect Except i on will
be swallowed.

Once the socket client invoker get an available socket connection from the pool, are not out of the woods yet. For
example, a network problem could cause aj ava. net . Socket Except i on. There is al'so a possibility that the socket
connection, while still appearing to be valid, has "gone stale" while sitting in the pool. For example, a Ser ver -
Thr ead on the other side of the connection could time out and close its socket. If the attempt to complete an invoca
tion fails, then M croSocket d i ent I nvoker will make a number of attempts, according to the parameter "number-
OfCallRetries’, with a default value of 3. Once the configured number of retries has been exhausted, an
org. jboss.renoting. | nvocati onFai | ur eExcepti on will be thrown.

5.4.5.2. Configuration

The following configuration properties can be set at any time. If the Socket Server I nvoker has already started,
they will not take effect until it is stopped and restarted.

timeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the server side is
60000 (one minute). If the timeout parameter is set, its value will also be passed to the client side (see below).

backlog - The preferred number of unaccepted incoming connections allowed at a given time. The actua number
may be greater than the specified backlog. When the queue is full, further connection requests are rejected. Must be
a positive value greater than 0. If the value passed if equal or less than 0, then the default value will be assumed.
The default value is 200.

numAccept Threads - The number of threads that exist for accepting client connections. The default is 1.
maxPool Size - The number of server threads for processing client. The default is 300.

server SocketClass - specifies the fully qualified class name for the custom SocketWrapper implementation to use
on the server.

socket.check _connection - indicates if the invoker should try to check the connection before re-using it by sending
a single byte ping from the client to the server and then back from the server. This config needs to be set on both
client and server to work. Thisif false by default.

idleTimeout - indicates the number of seconds a pooled server thread can be idle (meaning time since last invoca
tions request processed) before it should be cleaned up and removed from the thread pool. The value for this prop-
erty must be greater than zero in order to enable idle timeouts on pooled server threads (otherwise they will not be
checked). Setting to value less than zero will disable idle timeout checks on pooled server threads, in the case was
previously enabled. The default value for this property is-1.

JBoss January 11, 2010 39

Configuration

evictabilityTimeout - indicates the number of milliseconds during which a server thread waiting for the next in-
vocation will not be interruptible.

continueAfterTimeout - indicates what a server thread should do after experiencing a
j ava. net . Socket Ti meout Excepti on. If set to "true”, or if JBossSerialization is being used, the server thread will
continue to wait for an invocation; otherwise, it will return itself to the thread pool.

immediateShutdown - indicates, when set to "true", that, when Connect or. st op() is called and it calls Socket -
Server | nvoker . st op(), al Server Thr eads are shut down immediately, even if they are processing an invocation.

Configurations affecting the Socket invoker client

There are some configurations which will impact the socket invoker client. They can be set in the | nvoker Locat or,
an MBean or bean XML configuration file, or can be passed in the configuration map when the d i ent is created.

enableTcpNoDelay - can be either true or false and will indicate if client socket should have TCP_NODELAY
turned on or off. TCP_NODELAY is for a specific purpose; to disable the Nagle buffering algorithm. It should
only be set for applications that send frequent small bursts of information without getting an immediate response;
where timely delivery of datais required (the canonical example is mouse movements). The default isfalse.

timeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the client side is
1800000 (or 30 minutes).

clientM axPool Size - the client side maximum number of active socket connections. This basically equates to the
maximum number of concurrent client calls that can be made from the socket client invoker. The default is 50.

number Of CallRetries - number of retries for making invocation. It is possible that a socket connection timed out
while waiting within the pool. Since not doing a connection check by default, will throw away the connection and
try to get a new one. Will do this for numberOfCallRetries times (which defaults to 3). If till fails, will throw an
org.j boss. renoting. | nvocati onFai | ureExcept i on, with the cause being the original exception.

clientSocketClass - specifies the fully qualified class name for the custom SocketWrapper implementation to use
on the client. Note, will need to make sure this is marked as a client parameter (using the 'isParam' attribute). Mak-
ing this change will not affect the marshaller/'unmarshaller that is used, which may also be a requirement.

socket.check _connection - indicates if the invoker should try to check the connection before re-using it by sending
a single byte ping from the client to the server and then back from the server. This config needs to be set on both
client and server to work. Thisif false by default.

useOnewayConnectionTimeout - indicates if, during a client side oneway invocation, M croSocket C i ent | n-
voker should wait for aversion byte from the server, which prevents the anomal ous behavior described in BREM-
706 "In socket transport, prevent client side oneway invocations from artificially reducing concurrency”. The de-
fault valueis"true".

Note. As of Remoting version 2.4, the following socket parameters, in addition to SO _TIMEOUT and
TCP_NODELAY, can be configured on the client client side: SO_KEEPALIVE, OOBINLINE, SO _RCVBUF,
SO_REUSEADDR, SO_SNDBUF, SO_LINGER, and "traffic class'. They are configured by the following para-
meter keys.

keepAlive - sets socket parameter SO_KEEPALIVE

JBoss January 11, 2010 40

Configuration

00BI nline - sets socket parameter OOBINLINE

receiveBuffer Size - sets socket parameter SO RCVBUF

reuseAddress - sets socket parameter SO REUSEADDR

sendBuffer Size - sets socket parameter SO SNDBUF

soLinger - sets socket parameter SO_LINGER

soL inger Duration - when socket parameter SO_LINGER is set to "true”, setslinger duration
trafficClass - sets socket traffic class

For more information about these parameters, see the java.net.Socket javadoc (ht-
tp://java.sun.com/j2se/1.4.2/docs/api/java/net/ Socket.html
[http://java.sun.com/j2se/1.4.2/docs api/javalnet/Socket.html]) or abook about the TCP protocaol.

5.4.6. SSL Socket transport

Supports al the configuration attributes as the Socket Invoker. The main difference is that the SSL Socket Invoker
uses an SSLSer ver Socket by default, created by an SSLSer ver Socket Fact ory. See section Socket factories and
server socket factories for more information.

5.4.7. RMI transport

registryPort - the port on which to create the RMI registry. The default is 3455. This also needs to have the is-
Param attribute set to true.

Note. The RMI server invoker creates a socket factory and passesit to a client invoker along with the RMI stub, so
the socket factory must be serializable. Therefore, if a socket factory is passed in to the server invoker by one of the
methods discussed in section Socket factories and server socket factories, then the user is responsible for supplying
a serializable socket factory.

Note. Prior to Remoting version 2.4, the RMI transport performed marshalling and unmarshalling only in the client
to server direction. As of version 2.4, it will use a marshaller and unmarshaller in the server to client direction, as
well. Moreover, marshalling and unmarshalling in the client to server direction has been made more efficient,
which results in the transmission of a different sequence of bytes. In case a version 2.4 release of Remoting needs
to communicate with an older version, it is possible to request the original marshalling behavior by setting the para-
meter or g. j boss. renoting. transport.rm . RM Server | nvoker. RM _ONEWAY_MARSHALLI NG (actual value "rmiOne-
wayMarshalling") to "true".

5.4.8. SSL RMI Invoker

Thisis essentially identical to the RMI invoker, except that it creates SSL socket and server socket factories by de-
fault.

Note. The SSL RMI server invoker creates a socket factory and passes it to a client invoker along with the RMI
stub, so the socket factory must be serializable. If the SSL RMI server invoker is allowed to create an SSLSocket -

JBoss January 11, 2010 41

http://java.sun.com/j2se/1.4.2/docs/api/java/net/Socket.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/Socket.html

Configuration

Fact ory from SSL parameters, as discussed in section Socket factories and server socket factories, it will take care
to create a serializable socket factory. However, if a socket factory is passed in to the server invoker (also discussed
in section Socket factories and server socket factories), then the user is responsible for supplying a serializable
socket factory. See ssirmi below for more information.

5.4.9. HTTP transport

The HTTP server invoker implementation is based on the Coyote HTTP/1.1 Connector Tomcat component, which
is supplied by the JBosswWeb implementation, in jbossweb.jar.

Note. Prior to release 2.5.0.GA, Remoting also was compatible with the Apache implementation of Tomcat, which
is no longer the case. Since JBossWeb requires jdk 1.5 or above, it follows that the HTTP transport in Remoting
2.5.0.GA and above has the same requirement.

The coyote Connector supports GET, POST, HEAD, OPTIONS, and HEAD method types and keep-alive, and
most any configuration allowed for Tomcat can be configured for the remoting HTTP server invoker. For more in-
formation on the configuration attributes available for the Tomcat connectors, please refer to ht-
tp://tomcat.apache.org/tomcat-5.5-doc/config/http.html. http://tomcat.apache.org/tomcat-5.5-doc/config/http.html
So for example, if wanted to set the maximum number of threads to be used to accept incoming http requests,
would use the 'maxThreads attribute. The only exception when should use remoting configuration over the Tomcat
configuration is for attribute 'address' (use serverBindAddress instead) and attribute 'port' (use serverBindPort in-
stead).

Note: The http invoker no longer has the configuration attributes 'maxNumThreadsHTTP or 'HTTPThreadPool' as
thread pooling is now handled within the Tomcat connectors, which does not expose external API for setting these.

A feature introduced in Remoting version 2.4 is the ability to configure HTTPQ i ent | nvoker to make multiple at-
tempts to complete an invocation. The feature is invoked by setting parameter HTTPO ientln-
voker . NUMBER_OF_CALL_ATTEMPTS (actua value "numberOfCallAttempts') to the desired integer. The parameter
can be configured in the I nvoker Locat or or in the configuration map passed to the ¢ i ent . The default valueis 1.

Since the remoting HTTP server invoker implementation is using Tomcat connectors, is possible to swap out the
Tomcat protocol implementations being wused. By default, the protocol being wused is
org. apache. coyote. httpll. HtpliProtocol . However, it is possible to switch to wuse the
org. apache. coyot e. ht t p11. Ht t p11Apr Pr ot ocol protocol, which is based on the Apache Portable Runtime (see
http://www .jboss.org/file-access/def ault/members/jbossweb/freezone/docs/2.1.0/apr.html

[http://www.jboss.org/fil e-access/default/members/jbossweb/freezone/docs/2.1.0/apr.ntml] for more details). |f
want to use the APR implementation, simply put the tcnative-1.dll (or tcnative-1.s0) on the system path so can be
loaded. The JBossWeb native libraries, which include tcnative-1.dll/tcnative-1.s0, may be downloaded from ht-
tp://www.jboss.org/jbossweb/.

Client request headers

The HTTP Invoker allows for some of the properties to be passed as request headers from client caller. The follow-
ing are possible http headers and what they mean:

sessionld - isthe remoting session id to identify the client caller. If thisis not passed, the HTTP server invoker will
try to create a session id based on information that is passed. Note, this means if the sessionld is not passed as part
of the header, there is no guarantee that the sessionld supplied to the invocation handler will always indicate the re-
quest from the same client.

JBoss January 11, 2010 42

http://tomcat.apache.org/tomcat-5.5-doc/config/http.html
http://tomcat.apache.org/tomcat-5.5-doc/config/http.html
http://www.jboss.org/file-access/default/members/jbossweb/freezone/docs/2.1.0/apr.html
http://www.jboss.org/jbossweb/
http://www.jboss.org/jbossweb/

Configuration

subsystem - the subsystem to call upon (which invoker handler to call upon). If there is more than one handler per
Connector, thiswill need to be set (otherwise will just use the only one available).

These request headers are set automatically when using aremoting client, but if using another client to send request
to the HTTP server invoker, may want to add these headers.

Response headers
If arequest onthe HTTP transport is made with the or g. j boss. renot i ng. d i ent method

public Object invoke(Object param Map netadata) throws Throwabl e

then org. j boss. renoting. transport. http. HTTPA i ent | nvoker returns the HTTP response headers in amap in
metadata, associated with the key
org.jboss.renoting.transport. http. HTTPMet adat aConst ant s. RESPONSE_HEADERS (actual value "Response-
Headers"). For example, the response header "Date" can be retrieved as follows:

bj ect payload = ... ;

HashMap net adata = new HashMap();

client.invoke(payl oad, netadata);

Map responseHeaders = (Map) netadat a. get (HTTPMet adat aConst ant s. RESPONSE_HEADERS) ;
String date = (String) responseHeaders. get("Date");

CR/LF in HTTP transport

By default, the HTTP transport uses org.jboss.renoting. marshal.http. HTTPMarshal ler and
org. j boss. renoting. marshal . htt p. HTTPUnMar shal | er to marshal and unmarshal invocations and responses. Pri-
or to Remoting version 2.4, HTTPUnMar shal | er stripped CR/LF characters. As of version 2.4, the default behavior
remains the same, but it is possible to change the behavior, on the client and the server, by setting the parameter
HTTPUnMar shal | er . PRESERVE_LI NES (actual value "preservelines’) to "true".

5.4.10. HTTPS transport

Supports all the configuration attributes as the HTTP Invoker, plus the following:

SSLImplementation - Sets the Tomcat SSLimplementation to use. This should aways be
org.jboss.renpting.transport. coyote. ssl.Renoti ngSSLI npl ement ati on.

The main difference with the HTTP invoker is that the HTTPS Invoker uses an SSLSer ver Socket by default, cre-
ated by an ssLSer ver Socket Fact ory. See section Socket factories and server socket factories for more informa-
tion.

5.4.11. HTTP(S) Client Invoker - proxy and basic authentication

This section covers configuration specific to the HTTP Client Invoker only and is NOT related to HTTP(S) invoker
configuration on the server side (via service xml).

proxy

JBoss January 11, 2010 43

Configuration

There are a few ways in which to enable http proxy using the HTTP client invoker. The first is simply to add the
following properties to the metadata Map passed on the Client's invoke() method: http. proxyHost and nt -
t p. proxyPort.

An example would be:

Map netadata = new HashMap();

/1 proxy info
nmet adat a. put ("http. proxyHost", "ginger");
met adat a. put ("http. proxyPort", "80");

response = client.invoke(payl oad, netadata);

The http.proxyPort property is not required and if not present, will use default of 80. Note: setting the proxy config
inthisway can ONLY be doneif using JDK 1.5 or higher.

The other way to enable use of an http proxy server from the HTTP client invoker is to set the following system
properties (either via System set Property() method cal or via VM arguments): http. proxyHost, ht-
t p. proxyPort, and pr oxySet .

An example would be setting the following JVM arguments:

-Dhtt p. proxyHost =gi nger -Dhttp. proxyPort=80 - DproxySet=true

Note: when testing with Apache 2.0.48 (mod_proxy and mod_proxy_http), al of the properties above were re-
quired.

Setting the system properties can be used for JDK 1.4 and higher. However, will not be able to specify proxy server
per remoting client if use system properties..

Basic authentication - direct and via proxy

The HTTP client invoker also has support for BASIC authentication for both proxied and non-proxied invocations.
For proxied invocations, the following properties need to be set: ht t p. proxy. user name and ht t p. pr oxy. passwor d.

For non-proxied invocations, the following properties need to be set: http. basic.usernane and ht-
t p. basi c. passwor d.

For setting either proxied or non-proxied properties, can be done via the metadata map or system properties (see
setting proxy properties above for how to). However, for authentication properties, values set in the metadata Map
will take precedence over those set within the system properties.

Note: Only the proxy authentication has been tested using A pache 2.0.48; non-proxied authentication has not.

Since there are many different ways to do proxies and authentication in this great world of web, not all possible
configurations have been tested (or even supported). If you find a particular problem or see that a particular imple-
mentation is not supported, please enter an issue in Jira (http://jirajboss.com) under the JBossRemoting project, as
thisis where bugs and feature requests belong. If after reading the documentation have unanswered questions about
how to use these features, please post them to the remoting forum (ht-

JBoss January 11, 2010 44

http://jira.jboss.com

Configuration

tp:/lwww.jboss.org/index.html ?modul e=bb& op=viewforumé& =222
[http://iwww.jboss.org/index.html ?modul e=bb& op=viewforum& f=222]).

Host name verification

During the SSL handshake when making client calls using https transport, if the URL's hostname and the server's
ide