
The Unicus TextBox Control
from Unicus Data Systems

Introduction
The TextBox is probably the most used control in Visual Basic. Virtually every
application has at least a few of them. Unfortunately, the TextBox control that comes
with Visual Basic does not provide very much built-in functionality.
You have to manually add a caption, and make sure the caption is properly positioned
and aligned, and that the tab index of the textbox is one greater than the caption. If you
want to move the textbox somewhere else on your form, you have to manually move the
caption, and then change the tab index of both controls.
Further, if you want any validation to ensure that the user doesn’t enter bad data, or
formatting to display it in a user-friendly way, you have to write, test, and debug your
own code to do what you need. Then you have to duplicate that effort for every single
textbox on your form.
All of this adds significantly to the time it takes to develop a form. The Unicus TextBox
control solves all of these problems, and more. It brings almost all the features and
functionality of the Microsoft Access textbox to Visual Basic. The first thing you’ll
notice when you drop a Unicus TextBox control on your form is the attached caption.
This alone can save a lot of time because it means you don’t have to create a separate
caption control for each textbox and make sure that it is properly aligned and positioned
relative to the textbox. The caption supports hotkeys, and if you assign it a hotkey, it will
automatically set focus to the textbox when the user activates the hotkey. The textbox
will also automatically receive focus if the user clicks on the label.
The Unicus TextBox exposes a number of properties that give you, the developer, a high
degree of control over its behaviour and appearance. You can position the caption to the
left, right, top, or bottom of the textbox, or even hide the caption altogether. You can set
the font and appearance properties of the caption separately from the textbox. You can
make the control automatically select the entire contents of the textbox when it receives
the focus, just like in Access. If you need precise control over the caption position, you
can use the horizontal and vertical offset properties to place it exactly where you want.
The Unicus TextBox works in bound or unbound mode, just like the intrinsic TextBox
control. If you use it in bound mode, you can rely on the built-in DataFormat property of
the DataBindings collection. Or, in either bound or unbound mode, you can use the
custom DataType, DisplayFormat, CustomFormat, DataPrecision, DataScale, and
NumberOfDecimals properties to control what type of data is entered, and how it is
displayed to the user.
Another very useful feature is the Value property. The Text property of the intrinsic
TextBox control always returns the contents of the textbox as they are displayed. There is
no way to convert that to the actual value without writing your own code. This is one of
its most serious limitations. The Text property of the Unicus TextBox works exactly the
same. However, the Unicus TextBox also exposes a Value property. This is the default
property, and it always returns the underlying data value of the contents of the textbox,
based on the DataType, regardless of how it is formatted. So you can display a percent
field as 15.34%, which makes sense to the user, but the value property will return 0.1534,

so you don’t have to do any conversion at all before writing it to the database or using it
in your code. Further, if the textbox is empty, the Text property returns an empty string,
but the Value property returns Null. As a result, where normally you would have to write
code similar to the following to properly handle saving a percent field to the database

 Dim strValue As String

 If IsNull(Text1.Text) Then
 rs!Field = Null
 Else
 strValue = Text1.Text
 strValue = Replace(strValue, "%", "")
 If IsNumeric(strValue) Then
 strValue = strValue / 100
 Else
 strValue = 0
 End If
 rs!PercentField = strValue
 End If
You only have to write one simple line of code
 rs! PercentField = udsTextBox1
Because the Unicus TextBox does all the validation automatically, you don’t have to do
any of it. Finally, the Unicus TextBox exposes Before and After Update events, so you
have complete control over the data that goes into and out of the control. The Value
property is not updated until the AfterUpdate event, so if you don’t like what the user
entered, you cancel the BeforeUpdate event, and the value will not change.

Properties
Appearance

Value Description
0 Flat
1 3D (default)

Returns or sets whether or not the textbox portion of the control is painted at run time
with 3-D effects.

AutoSelectAll
Value Description
True Contents are automatically selected when the

control receives the focus
False Contents are not automatically selected when

the control receives the focus
Boolean value that returns or sets whether the entire contents of the control are selected
when the control receives the focus.

BackColor
Returns or sets the background color of the textbox portion of the control.

BorderStyle
Value Description

0 None
1 Fixed Single

Returns or sets the border style of the textbox portion of the control.

Caption
Returns or sets the text of the caption portion of the control.

CaptionAlignHoriz
Value Description

0 Left
1 Right
2 Center

Returns or sets the horizontal alignment of the caption. This property is affected by the
CaptionPosition and TextBoxFixedWidth properties. If CaptionPosition is set to 2-Top or
3-Bottom, CaptionAlignHoriz will have the expected effect. If CaptionPosition is set to
0-Left or 1-Right, CaptionAlignHoriz will have almost no effect unless
TextBoxFixedWidth is set to a non-zero value.

CaptionAlignVert
Value Description

0 Top
1 Bottom

Returns or sets the vertical alignment of the caption. This property is affected by the
CaptionPosition property. If CaptionPosition is set to 2-Top or 3-Bottom,
CaptionAlignVert has no effect. If CaptionPosition is set to 0-Left or 1-Right,
CaptionAlignVert will vertically align the caption to the top or bottom of the textbox.

CaptionAppearance
Value Description

0 Flat
1 3D

Returns or sets whether or not the caption portion of the control is painted at run time
with 3-D effects.

CaptionBackColor
Returns or sets the background color of the caption portion of the control.

CaptionBorderStyle
Value Description

0 None
1 Fixed Single

Returns or sets the border style of the caption portion of the control.

CaptionFont
Returns or sets a Font object that determines the font characteristics of the caption portion
of the control

CaptionFontBold
Boolean value that returns or sets whether or not the font of the caption portion of the
control is bolded.

CaptionItalic
Boolean value that returns or sets whether or not the font of the caption portion of the
control is italicized.

CaptionFontSize
Returns or sets the font size of the caption portion of the control.

CaptionFontStrikethru
Boolean value that returns or sets whether or not the font of the caption portion of the
control has the strikethrough characteristic.

CaptionFontUnderline
Boolean value that returns or sets whether or not the font of the caption portion of the
control is underlined.

CaptionForeColor
Returns or sets the forecolor of the caption portion of the control.

CaptionOffsetHoriz
Returns or sets a Long Integer value that determines the number of scale mode units that
the caption portion of the control is adjusted horizontally from its original position. This
property gives you complete control over how close to the textbox the caption will be
positioned. Setting CaptionOffsetHoriz to a negative value will move the caption to the
left. Setting it to a positive value will move it to the right.

CaptionOffsetVert
Returns or sets a Long Integer value that determines the number of scale mode units that
the caption portion of the control is adjusted vertically from its original position. This
property gives you complete control over how close to the top or bottom of the textbox
the caption will be positioned. Setting CaptionOffsetVert to a negative value will move
the caption up. Setting it to a positive value will move it down.

CaptionPosition
Value Description

0 Positions the caption to the left of the textbox
1 Positions the caption to the right of the textbox
2 Positions the caption above the textbox

3 Positions the caption below the textbox
Returns or sets a value that determines the position of the caption portion of the control
relative to the textbox portion of the control. You can position the caption on any side of
the textbox, which allows you to use the control anywhere on your forms.

CustomFormat
String. If DisplayFormat is set to 12-Custom, you can use the CustomFormat property to
determine how the text should be formatted for display. Whatever you set the
CustomFormat property will be passed into Visual Basic’s built-in Format function. If
Visual Basic is able to interpret the data against the custom format, it will set the format
accordingly. If the data in the textbox cannot be interpreted based on the custom format,
it will simply be left as it is entered.
If DataType is set to 1-Boolean, then CustomFormat is interpreted as
TruePart|FalsePart|NullPart. For example, if you want to display the phrase “Yes” if the
value is true, and “No” if the value is false, you would set DataType to 1-Boolean, and
CustomFormat to “Yes|No”. If the value can be interpreted as a boolean, the textbox will
display the text you specify. If the value cannot be interpreted as a Boolean, the textbox
will interpret it as False. If you leave out the NullPart portion of the custom format then it
will display a null value as Null.

DataPrecision
DataPrecision is used only if DataType is set to 5-Decimal. If DataPrecision is set to a
non-zero value, then the control will not allow more than DataPrecision digits in total to
be entered. If more than DataPrecision digits are entered, the control will not lose focus,
and an error message will be displayed to the user. You can prevent the message from
appearing, or replace it with your own message, by trapping the ControlError event and
setting the SuppressMessage parameter to True. If DataType is set to anything other than
5-Decimal, DataPrecision and DataScale are ignored.

DataScale
DataScale is used only if DataType is set to 5-Decimal, and DataPrecision is set to a non-
zero value. When the user tries to update the control, it will not allow more than
DataPrecision digits in total to be entered. Further, it will now allow more than DataScale
of those digits to be after the decimal point. DataPrecision and DataScale in udsTextBox
are similar but not identical to the corresponding properties in SQL Server. If you define
a field in SQL Server as Decimal, with Precision = 5 and Scale =2, then SQL Server
allows no more than 3 digits to the left of the decimal, and 2 digits to the right.
If you set udsTextBox to the same properties, it will allow no more than 5 digits in total.
All 5 can be to the left of the decimal and none to the right, or 4 to the left and 1 to the
right, or 3 to the left and 2 to the right, but no more than 5 in total and no more than 2 to
the right. If you don’t care which side of the decimal the digits are entered, you can set
the DataPrecision and DataScale properties to the same value.
If more than DataScale decimals are entered, the control will not lose focus, and an error
message will be displayed to the user. You can prevent the message from appearing, or
replace it with your own message, by trapping the ControlError event and setting the

SuppressMessage parameter to True. If DataType is set to anything other than 5-Decimal,
DataPrecision and DataScale are ignored.

DataType
Value Description

0 String. Any entry is allowed.
1 Boolean. Only data that can be interpreted as Boolean will be

allowed.
2 Long Integer. Only valid long integer (SQL int) data is allowed.
3 Integer. Only valid integer (SQL smallint) data is allowed.
4 Byte. Only valid byte data (SQL tinyint) is allowed
5 Decimal. Only numeric data is allowed. Number of digits allowed

is controlled by DataPrecision and DataScale.
6 Date. Only data that can be interpreted as a date is allowed.

The DataType property is used to validate what the user enters. This property eliminates
the need to put any validation code in your application. You simply set this property,
combined with the DataPrecision and DataScale properties if DataType is 5-Decimal, and
the control does all the validation for you. If the data entered by the user cannot be
interpreted against the data type you specify, the control will not lose focus, and an error
message will be displayed to the user. You can prevent the message from appearing, or
replace it with your own message, by trapping the ControlError event and setting the
SuppressMessage parameter to True.

DisplayFormat
Value Description Example

0 None. No formatting is performed.
1 Standard. Depends on

NumberOfDecimals.
1,234.56

2 Fixed. Depends on
NumberOfDecimals.

1234.56

3 Long Date. Depends on regional
settings.

Tuesday, August 12, 2003

4 Medium Date YY. 12 Aug 03
5 Medium Date YYYY. 12 Aug 2003
6 Short Date. Depends on regional

settings.
8/12/2003

7 Long Time. Depends on regional
settings.

10:34:31 PM

8 Medium Time. Depends on regional
settings.

10:34 PM

9 Short Time. Depends on regional
settings.

22:35

10 Currency. Depends on regional
settings and on NumberOfDecimals.

$59.98

11 Percent. Depends on regional
settings and on NumberOfDecimals.

19.45%

12 Custom Uses the CustomFormat property
The DisplayFormat property affects how data is displayed in the control after it loses
focus. You can set it to one of the built-in formats, or set it to 12-Custom and use the
CustomFormat property to define your own property. The DisplayFormat property is
used in conjunction with the DataType property to determine how the Value property
should be returned. If you set DisplayFormat to a value other than 0-None, the control
will display the value in the appropriate format, but the value property will return the
underlying data value in the data type specified by DataType. For example, if you set the
DataType to 6-Date and the DisplayFormat to 3-Long Date, the Value property will
return the value as data type Date, but the Text property (the displayed text) will return
the underlying value formatted to Long Date as specified in the user’s Regional Settings.

Font
Returns or sets a Font object that determines the font characteristics of the textbox
portion of the control

FontBold
Returns or sets whether or not the font of the textbox portion of the control is bolded.

FontItalic
Returns or sets whether or not the font of the textbox portion of the control is italicized.

FontSize
Returns or sets the font size of the textbox portion of the control.

FontStrikethru
Returns or sets whether or not the font of the textbox portion of the control has the
strikethrough characteristic.

FontUnderline
Returns or sets whether or not the font of the textbox portion of the control is underlined.

ForeColor
Returns or sets the forecolor of the textbox portion of the control.

HasDataChanged
HasDataChanged returns a Boolean value that tells you whether the underlying data value
in the textbox has changed since it was last updated. Because the control is automatically
updated only when it loses focus or when the user presses the Enter key (if Multiline =
False), it will not be updated if the user clicks directly on your data control before doing
anything else. Therefore, you will need to use this property in conjunction with the
UpdateValue method in the WillMove event of the ADO data control or anywhere in
your code that you will cause the recordset to change records. Putting the following code
in this event will cause the control to properly update the database:
 If udsTextBox1.HasDataChanged Then

 udsTextBox1.UpdateValue
 End If

Height
Returns or sets the height of the control. If the CaptionPosition property is set to 0-Left or
1-Right, the textbox portion of the control will automatically expand vertically so that its
height equals the Height property. If the CaptionPosition property is set to 2-Top or 3-
Bottom, the textbox portion of the control will automatically expand vertically so that its
height equals the Height property minus the height of the caption portion of the control.

Left
Returns or sets the distance between the internal left edge of the control and the left edge
of its container.

Locked
Determines whether the textbox portion of the control can be edited by the user at
runtime.

MaxLength
Returns or sets the maximum number of characters that can be entered at runtime in the
textbox portion of the control.

Multiline
Returns or sets a value that determines whether the textbox portion of the control can
accept multiple lines of text. If Multiline is True, the control automatically displays a
vertical scrollbar, and the Enter key causes the cursor to move to the next line in the
textbox portion of the control. If Multiline is False, the scrollbar disappears, and the Enter
key causes the BeforeUpdate event to fire, followed by the AfterUpdate event, unless you
cancel the BeforeUpdate event. When Multiline is True, the control is not updated until it
loses focus. Unlike the built-in VB textbox, you can change the multiline property of the
textbox at design time or run time.

NumberOfDecimals
The NumberOfDecimals property is used in conjunction with the DisplayFormat property
to determine the number of decimals to display for decimal data. If DisplayFormat is set
to 1-Standard, 2-Fixed, 10-Currency, or 11-Percent, you can use the NumberOfDecimals
property to override the default setting of 2. If you set NumberOfDecimals greater than
the number of non-zero decimals that are actually stored in the value, the control will add
zeros on to the end. If you set NumberOfDecimals less than the number of non-zero
decimals that are actually stored in the value, the control will use the built-in VB Round
function to trim the value to the desired number of decimals.

Text
The Text property always returns the contents of the textbox portion of the control as
they appear to the user. It is updated on the Change event of the textbox.

TextBoxAlignment
Returns or sets the horizontal alignment of the text in the textbox portion of the control.

TextBoxFixedWidth
Normally the textbox portion of the control automatically resized itself horizontally to fill
in the entire difference between the caption width and the overall control width. You can
override this behaviour, though, by setting TextBoxFixedWidth to a non-zero value. This
will cause the textbox to remain the width you specify, no matter how wide or narrow
you make the control. This can be useful if you have a column of controls arrayed
vertically and you want all the captions to be aligned with each other at the left of the
form, and all the textboxes to be the same width aligned with each other.

TextBoxWidth
TextBoxWidth returns the actual width of the textbox portion of the control at any time.
If TextBoxFixedWidth is a non-zero value, then TextBoxWidth will always equal
TextBoxFixedWidth. Otherwise, TextBoxWidth will vary depending on the width of the
caption portion of the control and the overall width of the control. TextBoxWidth is a
read-only property available at design time and run time.

Top
Returns or sets the distance between the internal top edge of the control and the top edge
of its container.

Value
Returns the underlying data value of the contents of the textbox portion of the control. It
is not updated until the AfterUpdate event of the control has fired. The Value property
behaves differently depending on the DataType properties. The following table describes
this behaviour
DataType Behaviour of the Value property
0-String
2-Long Integer
3-Integer
4-Byte

Same as the Text property. However, if the Text property returns an
Empty String, the Value property returns Null.

1-Boolean The Boolean constant True or False, or Null.
5-Decimal The underlying number as a decimal data type, without any commas,

percent signs, dollar signs, or other non-numeric characters.
If DisplayFormat is Percent, Value returns the number as a decimal (i.e.
if Text = 15.0%, Value returns 0.15).

6-Date The underlying value as a Date data type, or Null.
The behaviour of the Value property when DataType is Boolean, Decimal, or Date is one
of the most useful features of the Unicus Text Box. It allows you to display the data to
the user in a way that is meaningful to them, while relying on the Value property to tell
you exactly what the value truly is.
The Value property returns Null if the control is empty, whereas the Text property returns
an Empty String. The Value property is also the Default property of the control, so when

you refer to it in code, you don’t have to explicitly use the syntax varValue =
udsTextBox1.Value. You can simply use varValue = udsTextBox1.

Width
Returns or sets the overall width of the control.

WordWrap
Returns or sets a value that determines whether the label portion of the control expands
vertically to fit the Caption text.

Custom Events
AfterUpdate
The AfterUpdate event fires after the text in the control has been validated to be
appropriate for the specified DataType. Until the AfterUpdate event fires, the Value
property is not updated, but the Text property is updated on the Change event of the
control. If the BeforeUpdate event is cancelled, the AfterUpdate event will not fire, and
the Value property will not be updated.
The control is updated, and the AfterUpdate event fires when the control loses focus, and
when the user presses the Enter key (only if Multiline = False). It does not fire if you set
the Text or Value properties in code.

BeforeUpdate (NewValue As Variant, Cancel As Boolean,
RestoreOldValue As Boolean)
The BeforeUpdate fires when the user attempts to update the control by pressing Enter
(when Multiline = False), or by attempting to leave the control. The data in the control is
validated based on the DataType property. If the data is appropriate for the specified
DataType, the Value property is updated and the AfterUpdate event is fired.
During the BeforeUpdate event, the Value property returns the old value of the control
before the user made any changes. The NewValue parameter of the BeforeUpdate event
returns the underlying value of the text that the user has typed. You can use this to
perform your own validation based on your application’s business rules. If NewValue
fails your validation, you can set Cancel to True. This will prevent the control from being
updated, the Value property will remain at its old value, and the control will not lose
focus. However, the Text property will still be what the user entered, unless you set the
RestoreOldValue parameter to True along with Cancel. This will cause the control to
keep focus, and it will replace what the user typed with the value that the control held
before the user started to change it. If Cancel is left False, then RestoreOldValue is
ignored.

Change
The change event fires when the Text property of the textbox portion of the control
changes. It has no parameters and cannot be cancelled. During this event, the Value
property still returns the old value of the control.

Click(ClickLocationIsTextBox As Boolean)
The Click event fires when the user clicks either the caption or textbox portions of the
control. The ClickLocationIsTextBox parameter tells you whether the caption or textbox
portion of the control was clicked. The Click event does not fire if the user clicks in the
dead area of the control. When the user clicks on the label portion of the control, the
textbox automatically receives the focus. You do not have to do anything to make this
happen. The Click event does not fire if the user clicks in the dead area of the control.

ControlError(ErrorNumber As Long, ErrorDescription As String,
SupressMessage As Boolean)
The ControlError fires when certain errors occur in the control. ErrorNumber and
ErrorDescription tell you what the error was. SuppressMessage allows you to prevent the
default message from displaying so that you can either display your own message, or log
the error, or do whatever you want with it. SuppressMessage defaults to False, so the
default message will be displayed unless you explicitly set this parameter to True.

DblClick
The DblClick event fires when the user double-clicks in the textbox portion of the
control. The DblClick event does not fire if the user clicks on the label portion or in the
dead area of the control.

GotFocus
The GotFocus event fires when the textbox portion of the control receives the focus.
Because the caption portion of the control is built from an intrinsic VB label control, it
cannot receive the focus. However, if the user clicks on the caption portion of the control,
the textbox portion of the control will automatically receive the focus.

Standard Events
Most other events that are standard to an intrinsic Visual Basic textbox are included with
the Unicus Text Box. These include DragDrop, DragOver, KeyDown, KeyPress, KeyUp,
LostFocus, MouseDown, MouseMove, MouseUp, Resize, and Validate.

Custom Methods
UpdateValue
You can call this method at any time in your code to force the control to update the Value
property. This will cause the AfterUpdate event to fire but not the BeforeUpdate event. If
you update the control using this method, it cannot be cancelled or reversed without
writing your own code.

	Introduction
	Properties
	
	Appearance
	AutoSelectAll
	BackColor
	BorderStyle
	Caption
	CaptionAlignHoriz
	CaptionAlignVert
	CaptionAppearance
	CaptionBackColor
	CaptionBorderStyle
	CaptionFont
	CaptionFontBold
	CaptionItalic
	CaptionFontSize
	CaptionFontStrikethru
	CaptionFontUnderline
	CaptionForeColor
	CaptionOffsetHoriz
	CaptionOffsetVert
	CaptionPosition
	CustomFormat
	DataPrecision
	DataScale
	DataType
	DisplayFormat
	Font
	FontBold
	FontItalic
	FontSize
	FontStrikethru
	FontUnderline
	ForeColor
	HasDataChanged
	Height
	Left
	Locked
	MaxLength
	Multiline
	NumberOfDecimals
	Text
	TextBoxAlignment
	TextBoxFixedWidth
	TextBoxWidth
	Top
	Value
	Width
	WordWrap

	Custom Events
	
	AfterUpdate
	BeforeUpdate (NewValue As Variant, Cancel As Boolean, RestoreOldValue As Boolean)
	Change
	Click(ClickLocationIsTextBox As Boolean)
	ControlError(ErrorNumber As Long, ErrorDescription As String, SupressMessage As Boolean)
	DblClick
	GotFocus

	Standard Events
	Custom Methods
	
	UpdateValue

